题目:
Given a set of distinct integers, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: nums = [1,2,3] Output: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]描述:
给出一个数组,输出该数组的全部子集,
分析:
递归暴力求解,
本题目可以分解为多道求组合的题目(解法点这里),
对于本题来说,数组中的数据不一定是增序,想要控制组合的生成需要多加一个标识位,具体看代码实现...
代码:
class Solution { public: vector<vector<int>> subsets(vector<int>& nums) { vector<vector<int>> result; for (int i = 0; i <= nums.size(); ++ i) { vector<bool> visit(nums.size(), false); vector<int> current; dfs(i, 0, nums, visit, current, result); } return result; } void dfs(int k, int index, const vector<int> &nums, vector<bool> &visit, vector<int> ¤t, vector<vector<int>> &result) { if (!k) { result.push_back(current); return ; } for (int i = index; i < nums.size(); ++ i) { if (!visit[i]) { visit[i] = 1; if (!current.size() || i >= current.size()) { current.push_back(nums[i]); dfs(k - 1, i, nums, visit, current, result); current.pop_back(); } visit[i] = 0; } } } };