向量是对数的拓展,一个向量表示一组数;而矩阵则可以视为对向量的拓展,一个矩阵表示一组向量。
看待一个矩阵有两个视角,行向量视角和列向量视角。
当行数和列数相等时候,称为方阵,方阵有很多特殊的性质。有很多特殊的性质的矩阵,是方阵。
两个同形矩阵加法, A = ( a 11 a 12 . . . a 1 c a 21 a 22 . . . a 2 c . . . . . . . . . . . . a r 1 a r 2 . . . a r c ) B = ( b 11 b 12 . . . b 1 c b 21 b 22 . . . b 2 c . . . . . . . . . . . . b r 1 b r 2 . . . b r c ) A=\begin{pmatrix}a_{11}&a_{12}&...&a_{1c}\\a_{21}&a_{22}&...&a_{2c}\\...&...&...&...\\a_{r1}&a_{r2}&...&a_{rc}\end{pmatrix}B=\begin{pmatrix}b_{11}&b_{12}&...&b_{1c}\\b_{21}&b_{22}&...&b_{2c}\\...&...&...&...\\b_{r1}&b_{r2}&...&b_{rc}\end{pmatrix} A=⎝⎜⎜⎛a11a21...ar1a12a22...ar2............a1ca2c...arc⎠⎟⎟⎞B=⎝⎜⎜⎛b11b21...br1b12b22...br2............b1cb2c...brc⎠⎟⎟⎞ A + B = ( a 11 + b 11 a 12 + b 12 . . . a 1 c + b 1 c a 21 + b 21 a 22 + b 22 . . . a 2 c + b 2 c . . . . . . . . . . . . a r 1 + b r 1 a r 2 + b r 2 . . . a r c + b r c ) A+B=\begin{pmatrix}a_{11}+b_{11}&a_{12}+b_{12}&...&a_{1c}+b_{1c}\\a_{21}+b_{21}&a_{22}+b_{22}&...&a_{2c}+b_{2c}\\...&...&...&...\\a_{r1}+b_{r1}&a_{r2}+b_{r2}&...&a_{rc}+b_{rc}\end{pmatrix} A+B=⎝⎜⎜⎛a11+b11a21+b21...ar1+br1a12+b12a22+b22...ar2+br2............a1c+b1ca2c+b2c...arc+brc⎠⎟⎟⎞
一个实数与一个矩阵的乘法运算, A = ( a 11 a 12 . . . a 1 c a 21 a 22 . . . a 2 c . . . . . . . . . . . . a r 1 a r 2 . . . a r c ) A=\begin{pmatrix}a_{11}&a_{12}&...&a_{1c}\\a_{21}&a_{22}&...&a_{2c}\\...&...&...&...\\a_{r1}&a_{r2}&...&a_{rc}\end{pmatrix} A=⎝⎜⎜⎛a11a21...ar1a12a22...ar2............a1ca2c...arc⎠⎟⎟⎞ k ⋅ A = ( k ⋅ a 11 k ⋅ a 12 . . . k ⋅ a 1 c k ⋅ a 21 k ⋅ a 22 . . . k ⋅ a 2 c . . . . . . . . . . . . k ⋅ a r 1 k ⋅ a r 2 . . . k ⋅ a r c ) k\cdot A=\begin{pmatrix}k\cdot a_{11}&k\cdot a_{12}&...&k\cdot a_{1c}\\k\cdot a_{21}&k\cdot a_{22}&...&k\cdot a_{2c}\\...&...&...&...\\k\cdot a_{r1}&k\cdot a_{r2}&...&k\cdot a_{rc}\end{pmatrix} k⋅A=⎝⎜⎜⎛k⋅a11k⋅a21...k⋅ar1k⋅a12k⋅a22...k⋅ar2............k⋅a1ck⋅a2c...k⋅arc⎠⎟⎟⎞
交换律 A + B = B + A A + B = B + A A+B=B+A
结合律 ( A + B ) + C = A + ( B + C ) (A + B) + C = A + (B + C) (A+B)+C=A+(B+C) ( c ⋅ k ) ⋅ A = c ⋅ ( k ⋅ A ) (c\cdot k) \cdot A = c\cdot(k\cdot A) (c⋅k)⋅A=c⋅(k⋅A) 。其中c和k是实数 k ⋅ ( A + B ) = k ⋅ A + k ⋅ B k\cdot(A + B) = k\cdot A + k\cdot B k⋅(A+B)=k⋅A+k⋅B ( c + k ) ⋅ A = c ⋅ A + k ⋅ A (c + k) \cdot A = c\cdot A + k\cdot A (c+k)⋅A=c⋅A+k⋅A
任何一个矩阵 A A A,都存在一个相同形状的矩阵 O O O,满足 A + O = A A + O = A A+O=A
接之前Matrix类代码,
def __add__(self, another): assert self.shape() == another.shape() return Matrix([[a+b for a, b in zip(self.row_vector(i), another.row_vector(i))] for i in range(self.row_num()]) def __sub__(self, another): assert self.shape() == another.shape() return Matrix([[a-b for a, b in zip(self.row_vector(i), another.row_vector(i))] for i in range(self.row_num()]) def __mul__(self, k): return Matrix([[k*a for a in self.row_vector(i)] for i in range(self.row_num()]) def __rmul__(self, k): return Matrix([[k*a for a in self.row_vector(i)] for i in range(self.row_num()]) def __truediv__(self, k): return Matrix([[a/k for a in self.row_vector(i)] for i in range(self.row_num()]) def __pos__(self): return self def __neg__(self): return -1 * self @classmethod def __zero__(cls, r, c): return cls([[0] * c] for _ in range(r))