正则化(Normalization)

    xiaoxiao2023-10-09  151

    正则化:将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其他核函数方法计算两个样本之间的相似性,这个方法会很有用。  Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是是的每个处理后样本的p-范数(L1-norm, L2-norm)等于1。  p-范数的计算公式:||x||p=(|x1|^p+|x2|^p+…+|xn|^p)^(1/p)  该方法主要应用在文本分类和聚类中。例如,对于两个TF-IDF向量的I2-norm进行点积,就可以得到这两个向量的余弦相似性。

    1.可以使用preprocessing.normalize()函数对指定数据进行转换。

    X=  [[ 1., -1.,  2.],     [ 2.,  0.,  0.],     [ 0.,  1., -1.]] X_normalized = preprocessing.normalize(X, norm='l2') X_normalized array([[ 0.40..., -0.40...,  0.81...],        [ 1.  ...,  0.  ...,  0.  ...],        [ 0.  ...,  0.70..., -0.70...]])12345678

    怎么算出来的呢?

     

    按行算: [1,-1,2]的L2范数是(1^2+(-1)^2+2^2)^(1/2)=6^(1/2)=2.45 第一行的每个元素除以L2范数,得到: [1/2.45, -1/2.45, 2/2.45] = [0.4, -0.4, 0.8..] 第二行和第一行一样,也是算自己的L2范数:(2^2+0^2+0^2)^(1/2)=2, [ 2/2,  0/2,  0/2]=[1,0,0]……123456

     

    2.可以使用processing.Normalizer()类实现对训练集合测试集的拟合与转换:

    normalizer = preprocessing.Normalizer().fit(X) # fit does nothing >>>normalizer Normalizer(copy=True, norm='l2')

    >>>normalizer.transform(X) array([[ 0.40..., -0.40...,  0.81...],        [ 1.  ...,  0.  ...,  0.  ...],        [ 0.  ...,  0.70..., -0.70...]])

    >>> normalizer.transform([[-1.,  1., 0.]])              array([[-0.70...,  0.70...,  0.  ...]])

    最新回复(0)