ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

    xiaoxiao2023-10-10  162

    ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

     

     

    目录

    输出结果

    设计思路

    核心代码

    更多输出


     

     

     

     

    输出结果

    正在更新……

     

    设计思路

    正在更新……

     

    核心代码

    from sklearn.grid_search import GridSearchCV param_test = { 'n_estimators': range(1, 51, 1)} clf = GridSearchCV(estimator = bst, param_grid = param_test, cv=5) clf.fit(X_train, y_train) clf.grid_scores_, clf.best_params_, clf.best_score_ grid_scores_mean= [0.90542, 0.94749, 0.90542, 0.94749, 0.90573, 0.94718, 0.90542, 0.94242, 0.94473, 0.97482, 0.94887, 0.97850, 0.97298, 0.97850, 0.97298, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97804, 0.97774, 0.97835, 0.98296, 0.98419, 0.98342, 0.98372, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419 ] grid_scores_std = [0.08996, 0.07458, 0.08996, 0.07458, 0.09028, 0.07436, 0.08996, 0.07331, 0.07739, 0.02235, 0.07621, 0.02387, 0.03186, 0.02387, 0.03186, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02365, 0.02337, 0.02383, 0.01963, 0.02040, 0.01988, 0.02008, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040 ] #7-CrVa交叉验证曲线可视化 import matplotlib.pyplot as plt x = range(0,len(grid_scores_mean)) y1 = grid_scores_mean y2 = grid_scores_std Xlabel = 'n_estimators' Ylabel = 'value' title = 'mushroom datase: xgboost(sklearn+GridSearchCV) model' plt.plot(x,y1,'r',label='Mean') #绘制mean曲线 plt.plot(x,y2,'g',label='Std') #绘制std曲线 plt.rcParams['font.sans-serif']=['Times New Roman'] #手动添加中文字体,或者['font.sans-serif'] = ['FangSong'] SimHei #myfont = matplotlib.font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttf') #也可以指定win系统字体路径 plt.rcParams['axes.unicode_minus'] = False #对坐标轴的负号进行正常显示 plt.xlabel(Xlabel) plt.ylabel(Ylabel) plt.title(title) plt.legend(loc=1) plt.show()

     

    更多输出

    GridSearchCV time: 79.7655139499154 clf.grid_scores_: [mean: 0.90542, std: 0.08996, params: {'n_estimators': 1}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 2}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 3}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 4}, mean: 0.90573, std: 0.09028, params: {'n_estimators': 5}, mean: 0.94718, std: 0.07436, params: {'n_estimators': 6}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 7}, mean: 0.94242, std: 0.07331, params: {'n_estimators': 8}, mean: 0.94473, std: 0.07739, params: {'n_estimators': 9}, mean: 0.97482, std: 0.02235, params: {'n_estimators': 10}, mean: 0.94887, std: 0.07621, params: {'n_estimators': 11}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 12}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 13}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 14}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 15}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 16}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 17}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 18}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 19}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 20}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 21}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 22}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 23}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 24}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 25}, mean: 0.97804, std: 0.02365, params: {'n_estimators': 26}, mean: 0.97774, std: 0.02337, params: {'n_estimators': 27}, mean: 0.97835, std: 0.02383, params: {'n_estimators': 28}, mean: 0.98296, std: 0.01963, params: {'n_estimators': 29}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 30}, mean: 0.98342, std: 0.01988, params: {'n_estimators': 31}, mean: 0.98372, std: 0.02008, params: {'n_estimators': 32}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 33}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 34}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 35}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 36}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 37}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 38}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 39}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 40}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 41}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 42}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 43}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 44}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 45}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 46}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 47}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 48}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 49}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 50}] clf.best_params_: {'n_estimators': 30} clf.best_score_: 0.9841854752034392 [mean: 0.90542, std: 0.08996, params: {'n_estimators': 1}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 2}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 3}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 4}, mean: 0.90573, std: 0.09028, params: {'n_estimators': 5}, mean: 0.94718, std: 0.07436, params: {'n_estimators': 6}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 7}, mean: 0.94242, std: 0.07331, params: {'n_estimators': 8}, mean: 0.94473, std: 0.07739, params: {'n_estimators': 9}, mean: 0.97482, std: 0.02235, params: {'n_estimators': 10}, mean: 0.94887, std: 0.07621, params: {'n_estimators': 11}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 12}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 13}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 14}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 15}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 16}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 17}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 18}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 19}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 20}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 21}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 22}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 23}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 24}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 25}, mean: 0.97804, std: 0.02365, params: {'n_estimators': 26}, mean: 0.97774, std: 0.02337, params: {'n_estimators': 27}, mean: 0.97835, std: 0.02383, params: {'n_estimators': 28}, mean: 0.98296, std: 0.01963, params: {'n_estimators': 29}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 30}, mean: 0.98342, std: 0.01988, params: {'n_estimators': 31}, mean: 0.98372, std: 0.02008, params: {'n_estimators': 32}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 33}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 34}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 35}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 36}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 37}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 38}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 39}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 40}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 41}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 42}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 43}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 44}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 45}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 46}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 47}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 48}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 49}] grid_scores_ = [mean: 0.90542, std: 0.08996, mean: 0.94749, std: 0.07458, mean: 0.90542, std: 0.08996, mean: 0.94749, std: 0.07458, mean: 0.90573, std: 0.09028, mean: 0.94718, std: 0.07436, mean: 0.90542, std: 0.08996, mean: 0.94242, std: 0.07331, mean: 0.94473, std: 0.07739, mean: 0.97482, std: 0.02235, mean: 0.94887, std: 0.07621, mean: 0.97850, std: 0.02387, mean: 0.97298, std: 0.03186, mean: 0.97850, std: 0.02387, mean: 0.97298, std: 0.03186, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97804, std: 0.02365, mean: 0.97774, std: 0.02337, mean: 0.97835, std: 0.02383, mean: 0.98296, std: 0.01963, mean: 0.98419, std: 0.02040, mean: 0.98342, std: 0.01988, mean: 0.98372, std: 0.02008, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040 ]

     

    一个处女座的程序猿 认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十 人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
    最新回复(0)