22.IMU和里程计融合

    xiaoxiao2023-10-10  188

    1.概述 实际使用中会出现轮子打滑和累计误差的情况,这里单单使用编码器得到里程计会出现一定的偏差,虽然激光雷达会纠正,但一个准确的里程对这个系统还是较为重要

    2.IMU数据获取 IMU即为 惯性测量单元,一般包含了三个单轴的加速度计和三个单轴的陀螺仪,简单理解通过加速度二次积分就可以得到位移信息、通过角速度积分就可以得到三个角度,实时要比这个复杂许多

    2.1 PIBOT IMU PIBOT在嵌入式程序提供出原始的数据接口,通过配置可以输出原始raw_imu topic, 

      该topic类型为自定义具体如下,即为三轴加速度三轴陀螺仪和三轴磁力计的原始数据 

    通过对原始数据处理得到一个/imu/data_raw数据类型为sensor_msgs/Imu,    通过ROS提供的相关包imu_tools进行滤波  可以看到complementary_filter_gain_node会订阅该topic,即该topic作为输入滤波得到最终数据(发布/imu/data topic 类型同样为sensor_msgs/Imu)    输出该topic可以看到得到的值波动已经较小了,且静止的时候接近于0 

    3.两种融合的方法 3.1 一种简单的方法 从imu得到的数据为一个相对角度(主要使用yaw,roll和pitch 后面不会使用到),使用该角度来替代由编码器计算得到的角度。  这个方法较为简单,出现打滑时候因yaw不会受到影响,即使你抬起机器人转动一定的角度,得到的里程也能正确反映出来

    3.2 扩展的卡尔曼滤波 官方提供了个扩展的卡尔曼滤波的包robot_pose_ekf,robot_pose_ekf开启扩展卡尔曼滤波器生成机器人姿态,支持  - odom(编码器)  - imu_data(IMU)  - vo(视觉里程计)  还可以支持GPS  引用官方图片 

    PR2从实际初始点(绿色)溜达一圈回到初始点(绿色),编码器的里程(蓝色)发生了漂移,而使用robot_pose_ekf融合出来的里程(红色)则跟实际位置基本重合(后面我们会针对这个测试下效果)

    中间的圆是小圆放大的展示效果

    再回去看下该包的输出    - 发布一个topic, 类型需要注意下是PoseWithCovarianceStamped并非Odometry  后面会用到这个作为显示,所以还需要一个转换    查看该topic信息可以看到odom_ekf订阅了该topic  再次查看该节点信息可以看到 

    ,他会发出一个Odometry的topic 发出一个tf 

    在robot_pose_ekf配置时,做了些映射处理,这样可以保证导航层在使用和不用imu的时候无需修改就可以工作 

    bringup.lauch或者bringup_with_imu.launch 输出的tf都为odom → base_footprint ;发出的里程也都是odom  bringup_with_imu.launch轮子的里程topic 映射为wheel_odom

    这里很重要,后面的对该包的验证会使用到

    下2张图展示了未使用IMU和使用IMU时候的tf tree情况, 可以看到用了一致的frame 

    最新回复(0)