九、自己动手实现------------“ Union Find并查集 ”

    xiaoxiao2023-10-15  34

    参考文章:

    https://www.cnblogs.com/gaoquanquan/p/9898624.html          java——并查集 UnionFind (强推

    http://www.cnblogs.com/noKing/p/8018609.html#_label0         并查集(Java实现)

    https://github.com/liuyubobobo/Play-with-Algorithms  


    温馨提示:

           如果对于看不懂的代码,强烈建议拿出纸和笔,来画一画图,跟着代码走一遍,一遍走不通,过一会再捋一捋。如果实在是捋不顺,就找个师傅好好教教。

    上面的几篇文章,有参考的实现代码,有并查集的原理,我这里就不废话,直接上代码,看原理,建议看视频,以及优质的博客。

     

     并查集  Union Find 接口定义如下:

    public interface UF { int getSize(); boolean isConnected(int p, int q); void unionElements(int p, int q); }

     

    并查集的实现,这里有6个版本,每一个版本,都有所改进,是逐步的改进,这点 波波老师  的视频做的非常的好,我就无耻的拿过来了,因为我也想不出更好的代码了,至少目前是这样┭┮﹏┭┮

     

    第一版:

    // 我们的第一版Union-Find public class UnionFind1 implements UF { private int[] id; // 我们的第一版Union-Find本质就是一个数组 public UnionFind1(int size) { id = new int[size]; // 初始化, 每一个id[i]指向自己, 没有合并的元素 for (int i = 0; i < size; i++) id[i] = i; } @Override public int getSize(){ return id.length; } // 查找元素p所对应的集合编号 // O(1)复杂度 private int find(int p) { if(p < 0 || p >= id.length) throw new IllegalArgumentException("p is out of bound."); return id[p]; } // 查看元素p和元素q是否所属一个集合 // O(1)复杂度 @Override public boolean isConnected(int p, int q) { return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(n) 复杂度 @Override public void unionElements(int p, int q) { int pID = find(p); int qID = find(q); if (pID == qID) return; // 合并过程需要遍历一遍所有元素, 将两个元素的所属集合编号合并 for (int i = 0; i < id.length; i++) if (id[i] == pID) id[i] = qID; } }

     

     

    第二版:

    // 我们的第二版Union-Find public class UnionFind2 implements UF { // 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树 // parent[i]表示第一个元素所指向的父节点 private int[] parent; // 构造函数 public UnionFind2(int size){ parent = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ) parent[i] = i; } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); // 不断去查询自己的父亲节点, 直到到达根节点 // 根节点的特点: parent[p] == p while(p != parent[p]) p = parent[p]; return p; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if( pRoot == qRoot ) return; parent[pRoot] = qRoot; } }

     

    第三版:

    // 我们的第三版Union-Find public class UnionFind3 implements UF{ private int[] parent; // parent[i]表示第一个元素所指向的父节点 private int[] sz; // sz[i]表示以i为根的集合中元素个数 // 构造函数 public UnionFind3(int size){ parent = new int[size]; sz = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for(int i = 0 ; i < size ; i ++){ parent[i] = i; sz[i] = 1; } } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); // 不断去查询自己的父亲节点, 直到到达根节点 // 根节点的特点: parent[p] == p while( p != parent[p] ) p = parent[p]; return p; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if(pRoot == qRoot) return; // 根据两个元素所在树的元素个数不同判断合并方向 // 将元素个数少的集合合并到元素个数多的集合上 if(sz[pRoot] < sz[qRoot]){ parent[pRoot] = qRoot; sz[qRoot] += sz[pRoot]; } else{ // sz[qRoot] <= sz[pRoot] parent[qRoot] = pRoot; sz[pRoot] += sz[qRoot]; } } }

     

    第四版:

    // 我们的第四版Union-Find public class UnionFind4 implements UF { private int[] rank; // rank[i]表示以i为根的集合所表示的树的层数 private int[] parent; // parent[i]表示第i个元素所指向的父节点 // 构造函数 public UnionFind4(int size){ rank = new int[size]; parent = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ){ parent[i] = i; rank[i] = 1; } } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); // 不断去查询自己的父亲节点, 直到到达根节点 // 根节点的特点: parent[p] == p while(p != parent[p]) p = parent[p]; return p; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if( pRoot == qRoot ) return; // 根据两个元素所在树的rank不同判断合并方向 // 将rank低的集合合并到rank高的集合上 if(rank[pRoot] < rank[qRoot]) parent[pRoot] = qRoot; else if(rank[qRoot] < rank[pRoot]) parent[qRoot] = pRoot; else{ // rank[pRoot] == rank[qRoot] parent[pRoot] = qRoot; rank[qRoot] += 1; // 此时, 我维护rank的值 } } }

     

     

    第五版:

    // 我们的第五版Union-Find public class UnionFind5 implements UF { // rank[i]表示以i为根的集合所表示的树的层数 // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值 // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准 private int[] rank; private int[] parent; // parent[i]表示第i个元素所指向的父节点 // 构造函数 public UnionFind5(int size){ rank = new int[size]; parent = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ){ parent[i] = i; rank[i] = 1; } } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); while( p != parent[p] ){ parent[p] = parent[parent[p]]; p = parent[p]; } return p; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if( pRoot == qRoot ) return; // 根据两个元素所在树的rank不同判断合并方向 // 将rank低的集合合并到rank高的集合上 if( rank[pRoot] < rank[qRoot] ) parent[pRoot] = qRoot; else if( rank[qRoot] < rank[pRoot]) parent[qRoot] = pRoot; else{ // rank[pRoot] == rank[qRoot] parent[pRoot] = qRoot; rank[qRoot] += 1; // 此时, 我维护rank的值 } } }

     

     

    第六版:

    // 我们的第六版Union-Find public class UnionFind6 implements UF { // rank[i]表示以i为根的集合所表示的树的层数 // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值 // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准 private int[] rank; private int[] parent; // parent[i]表示第i个元素所指向的父节点 // 构造函数 public UnionFind6(int size){ rank = new int[size]; parent = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ){ parent[i] = i; rank[i] = 1; } } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); // path compression 2, 递归算法 if(p != parent[p]) parent[p] = find(parent[p]); return parent[p]; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if( pRoot == qRoot ) return; // 根据两个元素所在树的rank不同判断合并方向 // 将rank低的集合合并到rank高的集合上 if( rank[pRoot] < rank[qRoot] ) parent[pRoot] = qRoot; else if( rank[qRoot] < rank[pRoot]) parent[qRoot] = pRoot; else{ // rank[pRoot] == rank[qRoot] parent[pRoot] = qRoot; rank[qRoot] += 1; // 此时, 我维护rank的值 } } }

     

     

     

     

     

     

     

     

     

     

     

     

    最新回复(0)