matplotlib的初步认识

    xiaoxiao2023-10-16  119

    #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy # In[2]: import matplotlib.pyplot as plt # In[3]: import numpy as np x=np.linspace(0,10,100) print(x) # In[4]: y = np.sin(x) # In[5]: y # In[6]: plt.plot(x,y) plt.show() # In[7]: cosy= np.cos(x) # In[8]: cosy # In[9]: cosy.shape # In[10]: siny=y.copy() # In[11]: plt.plot(x,siny) plt.plot(x,cosy) plt.show() # In[12]: plt.plot(x,siny) plt.plot(x,cosy,color='red') plt.show() # In[13]: plt.plot(x,siny) plt.plot(x,cosy,color='red',linestyle = '--') plt.axis([-1,11,-2,2]) plt.show() # In[14]: plt.plot(x, siny, label="sin(x)") plt.plot(x, cosy, color="red", linestyle="--", label="cos(x)") plt.xlabel("x axis") plt.ylabel("y value") plt.legend() plt.title("Welcome to matplotlib world!") plt.show() # In[15]: plt.plot(x,siny,label="sin(x)") plt.plot(x,cosy,color="red",linestyle='--',label="cos(x)") plt.xlabel("x axis") plt.ylabel("y value") plt.legend() plt.title("welcom to matplotlib world") plt.show() # In[16]: plt.scatter(x,siny) plt.show() # In[17]: plt.scatter(x,siny) plt.scatter(x,cosy) plt.show() # In[18]: pip list # In[19]: pip install sklearn # In[20]: from sklearn import datasets # In[21]: iris = datasets.load_iris() # In[22]: iris.keys() # In[24]: print(iris['DESCR']) # In[25]: iris.data # In[26]: iris.target.shape # In[27]: iris.target_names # In[28]: X = iris.data[:,:2] # In[29]: plt.scatter(X[:,0], X[:,1]) plt.show() # In[30]: y = iris.target # In[31]: y # In[32]: plt.scatter(X[y==0,0], X[y==0,1], color="red") plt.scatter(X[y==1,0], X[y==1,1], color="blue") plt.scatter(X[y==2,0], X[y==2,1], color="green") plt.show() # In[33]: plt.scatter(X[y==0,0], X[y==0,1], color="red", marker="o") plt.scatter(X[y==1,0], X[y==1,1], color="blue", marker="+") plt.scatter(X[y==2,0], X[y==2,1], color="green", marker="x") plt.show() # In[34]: plt.scatter(X[y==0,0], X[y==0,1], color="red", marker="o") plt.scatter(X[y==1,0], X[y==1,1], color="blue", marker="+") plt.scatter(X[y==2,0], X[y==2,1], color="green", marker="x") plt.show() # In[35]: X = iris.data[:,2:] # In[36]: plt.scatter(X[y==0,0], X[y==0,1], color="red", marker="o") plt.scatter(X[y==1,0], X[y==1,1], color="blue", marker="+") plt.scatter(X[y==2,0], X[y==2,1], color="green", marker="x") plt.show() # In[37]: raw_data_X = [[3.393533211, 2.331273381], [3.110073483, 1.781539638], [1.343808831, 3.368360954], [3.582294042, 4.679179110], [2.280362439, 2.866990263], [7.423436942, 4.696522875], [5.745051997, 3.533989803], [9.172168622, 2.511101045], [7.792783481, 3.424088941], [7.939820817, 0.791637231] ] raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] # In[38]: X_train = np.array(raw_data_X) y_train = np.array(raw_data_y) # In[39]: x = np.array([8.093607318, 3.365731514]) plt.scatter(X_train[y_train==0,0], X_train[y_train==0,1], color='g') plt.scatter(X_train[y_train==1,0], X_train[y_train==1,1], color='r') plt.scatter(x[0], x[1], color='b') plt.show() # In[40]: b=np.array([1,2]) # In[41]: b**2 # In[42]: sum(b**2) # In[45]: from math import sqrt distances = [sqrt(np.sum((x_train - x)**2)) for x_train in X_train] # In[46]: distances # In[47]: nearest = np.argsort(distances) # In[49]: k = 6 topK_y = [y_train[neighbor] for neighbor in nearest[:k]] # In[50]: topK_y # In[51]: from collections import Counter votes = Counter(topK_y) # In[52]: votes.most_common(1) # In[53]: predict_y = votes.most_common(1)[0][0] # In[54]: predict_y # In[55]: bb=np.array([2,3,4,4]) # In[57]: bb.shape # In[58]: bb.shape[0] # In[59]: pwd # In[60]: y = iris.target # In[61]: X.shape # In[62]: y # In[64]: y.shape # In[65]: X = iris.data # In[66]: X # In[67]: shuffled_indexes = np.random.permutation(len(X)) shuffled_indexes # In[68]: test_ratio = 0.2 test_size = int(len(X) * test_ratio) # In[69]: test_indexes = shuffled_indexes[:test_size] train_indexes = shuffled_indexes[test_size:] # In[70]: X_train = X[train_indexes] y_train = y[train_indexes] # In[71]: X_test = X[test_indexes] y_test = y[test_indexes] # In[72]: print(X_train.shape) print(y_train.shape) # In[73]: print(X_test.shape) print(y_test.shape) # In[74]: digits = datasets.load_digits() digits.keys() # In[75]: print(digits.DESCR) # In[76]: X = digits.data X.shape # In[77]: y = digits.target y.shape # In[78]: y[:10] # In[79]: X[:10] # In[80]: some_digit = X[66] # In[81]: y[66] # In[82]: some_digit_image = some_digit.reshape(8, 8) # In[84]: import matplotlib import matplotlib.pyplot as plt plt.imshow(some_digit_image, cmap = matplotlib.cm.binary) plt.show() # In[85]: iris= datasets.load_iris() # In[86]: X=iris.data y=iris.target # In[87]: X[:10,:] # In[88]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=666) # ## sklearn 中的standardscaler # In[89]: from sklearn.preprocessing import StandardScaler # In[93]: standardScaler = StandardScaler() # In[94]: standardScaler.fit(X_train) # In[95]: standardScaler.mean_ # In[96]: standardScaler.scale_ # In[98]: X_train=standardScaler.transform(X_train) # In[99]: X_test_standard=standardScaler.transform(X_test) # In[100]: x=np.array([1,2,3,4,5]) y=np.array([1,3,2,3,5]) # In[101]: x_mean=np.mean(x) y_mean=np.mean(y) # In[102]: num=0 d=0 for x_i,y_i in zip(x,y): num+=(x_i-x_mean)*(y_i-y_mean) d+=(x_i-x_mean)**2 # In[103]: a=num/d a # In[104]: b=y_mean-a*x_mean # In[105]: b # In[106]: y_hat=a*x+b plt.scatter(x,y) plt.plot(x,y_hat,color='r') plt.show() # In[111]: boston = datasets.load_boston() # In[113]: print(boston.DESCR) # In[114]: x = boston.data[:,5] # 只使用房间数量这个特征 # In[116]: y = boston.target x = x[y < 50.0] y = y[y < 50.0] # In[117]: plt.scatter(x, y) plt.show() # ## 使用简单线性回归法 # In[125]: from sklearn import datasets iris = datasets.load_iris() X = iris.data[:,2:] y = iris.target plt.scatter(X[y==2,0], X[y==2,1]) plt.scatter(X[y==1,0], X[y==1,1]) plt.scatter(X[y==0,0], X[y==0,1]) plt.show() # In[ ]: # In[129]: import numpy as np x=np.linspace(0.01,0.99,200) # In[132]: def entropy(p): return -p*np.log(p)-(1-p)*np.log(1-p) # In[133]: plt.plot(x,entropy(x)) # In[134]: def split(X, y, d, value): index_a = (X[:,d] <= value) index_b = (X[:,d] > value) return X[index_a], X[index_b], y[index_a], y[index_b] # In[ ]:
    最新回复(0)