算法4第3章红黑树及习题讲解

    xiaoxiao2023-10-31  148

    二叉查找树在最坏的情况下性能很差时间复杂度是O(N),本节我们学习一种新的数据结构红黑树 它能保证操作在最坏情况下时间复杂度也是O(logN),无论怎么构造,它都能到达平衡,红黑树结构很复杂,首先我们学习一种叫2-3树的数据结构来帮忙对红黑树的理解。 一般的二叉查找树一个节点只能有一个键两个子节点,在2-3树中一个节点最多可以有两个键3个子节点,左子树中的键都比左边的键小, 中间子树的键大于左边的键小于右边的键,右子树的键都大于右边的键,2-3树的示意图如下

    //我们结合下图来理解2-3树的构造过程,

    插入的过程总是先把一个节点插入满3个键再进行分离,看右图的过程,先插入A,C,然后插入E,此时节点含3个键进行分裂,A,E各占一个节点,C移到父节点,然后插入H,L后再进行分裂,H移到父节点,然后L,M,P进行分裂,M移到父节点,这时父节点包含CHM3个键,所以父节点继续往上分裂,分裂的过程不会影响数的有序性和平衡性

    从图中可以看出不论怎么构造2-3树总能达到平衡 直接用2-3树这种数据结构来达到平衡行也可以实现,但是不太方便,因为要考虑的情况太多 红黑树对2-3树的结构做了些改变,使用简单的结构就可以表达和实现2-3树 红黑树把2-3树中含有两个键的节点想象成2个用红线连接在一起的节点,2-3树中的普通链接用黑线表示,这样红黑树还是一棵二叉树,红黑树和2-3树的对应关系如下

    红黑树有以下特征:

    1.红链接均为左链接

    2.没有节点同时和2个红链接相连,相当于含3个键的2-3树

    3.红黑树是完美黑色平衡的,即每个叶子节点到根节点黑链接数量相同 //红黑树的实现过程如下:

    public class RedBlackBST<Key extends Comparable<Key>, Value> {

        private static final boolean RED   = true;     private static final boolean BLACK = false;

        private Node root;     // root of the BST

        // BST helper node data type     private class Node {         private Key key;           // key         private Value val;         // associated data         private Node left, right;  // links to left and right subtrees         private boolean color;     // color of parent link,每个节点增加一个颜色值,代表父节点指向自己链接的颜色         private int size;          // subtree count

            public Node(Key key, Value val, boolean color, int size) {             this.key = key;             this.val = val;             this.color = color;             this.size = size;         }     }          /**      * Initializes an empty symbol table.      */     public RedBlackBST() {     }

       /***************************************************************************     *  Node helper methods.     ***************************************************************************/     // is node x red; false if x is null ?     private boolean isRed(Node x) {         if (x == null) return false;         return x.color == RED;     }

        // number of node in subtree rooted at x; 0 if x is null     private int size(Node x) {         if (x == null) return 0;         return x.size;     }

        /**      * Returns the number of key-value pairs in this symbol table.      * @return the number of key-value pairs in this symbol table      */     public int size() {         return size(root);     }

       /**      * Is this symbol table empty?      * @return {@code true} if this symbol table is empty and {@code false} otherwise      */     public boolean isEmpty() {         return root == null;     }          /**      * Does this symbol table contain the given key?      * @param key the key      * @return {@code true} if this symbol table contains {@code key} and      *     {@code false} otherwise      * @throws IllegalArgumentException if {@code key} is {@code null}      */     public boolean contains(Key key) {         return get(key) != null;     }

       /***************************************************************************     *  Standard BST search.     ***************************************************************************/

        /**      * Returns the value associated with the given key.      * @param key the key      * @return the value associated with the given key if the key is in the symbol table      *     and {@code null} if the key is not in the symbol table      * @throws IllegalArgumentException if {@code key} is {@code null}      */     public Value get(Key key) {         if (key == null) throw new IllegalArgumentException("argument to get() is null");         return get(root, key);     }

        // value associated with the given key in subtree rooted at x; null if no such key     private Value get(Node x, Key key) {         while (x != null) {             int cmp = key.compareTo(x.key);             if (cmp < 0) x = x.left;             else if(cmp > 0) x = x.right;             else  return x.val;         }         return null;     }          /***************************************************************************      *  Red-black tree insertion.      ***************************************************************************/

         /**       * Inserts the specified key-value pair into the symbol table, overwriting the old       * value with the new value if the symbol table already contains the specified key.       * Deletes the specified key (and its associated value) from this symbol table       * if the specified value is {@code null}.       *       * @param key the key       * @param val the value       * @throws IllegalArgumentException if {@code key} is {@code null}       */      public void put(Key key, Value val) {          if (key == null) throw new IllegalArgumentException("first argument to put() is null");          if (val == null) {              delete(key);              return;          }

             root = put(root, key, val);          root.color = BLACK;          // assert check();      }            // insert the key-value pair in the subtree rooted at h      //2-3树在插入过程中总是先往一个节点中插,当节点中键的个数为3时再分裂成2个含有1个键的节点,另一个键移到父节点中,      //移动后如果父节点变成含3个键的节点,则再分裂父节点      //红黑树也是一样,插入的节点总是先标记为红色,然后如果不满足红黑树的特征再进行分裂转换      private Node put(Node h, Key key, Value val) {          if (h == null) return new Node(key, val, RED, 1); //插入的节点先标记为红色

             int cmp = key.compareTo(h.key);          if      (cmp < 0) h.left  = put(h.left,  key, val);          else if (cmp > 0) h.right = put(h.right, key, val);          else              h.val   = val;                    // 插入节点后可能有下面这些情况导致不满足红黑树的特征,需要把h子树进行转换,转换后可能导致父节点构成的子树不满足特征,所以每层递归都要进行转换检查,参考上图          //并且要按照情况1,2,3的顺序来检查,因为情况1转换完可能出现情况2,情况2转换完可能出现情况3          //情况1:插入节点后h子树右链接是红色,左链接是黑色,需要进行往左旋转的操作,把红色链接转到左边          if (isRed(h.right) && !isRed(h.left))    h = rotateLeft(h);          //情况2:插入节点后h子树左链接是红色,左链接的左链接也是红色,需要进行往右旋转的操作,这种情况的出现类似2-3树中子节点键个数满3个向父节点分裂          //然后导致父节点也刚好满3个了,需要继续往上分裂转换          if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);          //情况3:插入节点后h子树左链接和右链接都是红色,需要进行转换颜色的操作,类型2-3树往父亲节点分裂,这种情况也可能是情况2转变过来的          if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);                    h.size = size(h.left) + size(h.right) + 1;                    return h;      }           //左旋转可以通过下图理解         private Node rotateLeft(Node h) {          // assert (h != null) && isRed(h.right);          Node x = h.right;          h.right = x.left;          x.left = h;          x.color = h.color;          x.left.color = RED;          x.size = h.size;          h.size = size(h.left) + size(h.right) + 1;          return x;      }      // make a left-leaning link lean to the right      private Node rotateRight(Node h) {          // assert (h != null) && isRed(h.left);          Node x = h.left;          h.left = x.right;          x.right = h;          x.color = h.color;          x.right.color = RED;          x.size = h.size;          h.size = size(h.left) + size(h.right) + 1;          return x;      }

         // flip the colors of a node and its two children      private void flipColors(Node h) {          // h must have opposite color of its two children          // assert (h != null) && (h.left != null) && (h.right != null);          // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))          //    || (isRed(h)  && !isRed(h.left) && !isRed(h.right));          h.color = !h.color;          h.left.color = !h.left.color;          h.right.color = !h.right.color;      }              /***************************************************************************     *  Red-black tree deletion.     ***************************************************************************/

        /**      * Removes the smallest key and associated value from the symbol table.      * @throws NoSuchElementException if the symbol table is empty      */

    我们还是通过2-3树来理解红黑树的删除操作,如下图左边的图如果删除a节点会导致树失去平衡,而右边的树删除a节点还是平衡的,因为还有个x键

    所以删除最小键过程中检查每个左子节点,如果发现左子节点中只含有一个键则进行分裂的逆操作,把该节点再添加一个键,这样在删除最小键后,节点不会为空,从而保持了树的平衡性。

    为左子节点添加一个键有3种情况:

    情况1:如果左子节点含有2个以上的键则不做操作,

    情况2:如果左子节点只有一个键,而它的兄弟节点有2个以上的键,则从兄弟节点中借一个键过来,过程如下图,代码对应moveRedLeft

    情况3:如果左子节点和它的兄弟节点都只有一个键,则从父节点借一个最小节点与左子节点和兄弟节点组合在一起,过程如下图,代码对应moveRedLeft里面的flipColor操作

        public void deleteMin() {         if (isEmpty()) throw new NoSuchElementException("BST underflow");

            // if both children of root are black, set root to red         if (!isRed(root.left) && !isRed(root.right))             root.color = RED;

            root = deleteMin(root);         if (!isEmpty()) root.color = BLACK;         // assert check();     }

        // delete the key-value pair with the minimum key rooted at h     private Node deleteMin(Node h) {         if (h.left == null)             return null;

    //说明h.left只含有一个键

            if (!isRed(h.left) && !isRed(h.left.left))             h = moveRedLeft(h);

            h.left = deleteMin(h.left);

    //最后对树进行平衡操作         return balance(h);     }

     

      // Assuming that h is red and both h.left and h.left.left     // are black, make h.left or one of its children red.     private Node moveRedLeft(Node h) {         // assert (h != null);         // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);

            flipColors(h);

    //平衡树的特征只有左链接可能是红色,所以兄弟节点有多个键时只能左链接是红色         if (isRed(h.right.left)) {             h.right = rotateRight(h.right);             h = rotateLeft(h);             flipColors(h);         }         return h;     }

        /**      * Removes the largest key and associated value from the symbol table.      * @throws NoSuchElementException if the symbol table is empty      */     public void deleteMax() {         if (isEmpty()) throw new NoSuchElementException("BST underflow");

            // if both children of root are black, set root to red         if (!isRed(root.left) && !isRed(root.right))             root.color = RED;

            root = deleteMax(root);         if (!isEmpty()) root.color = BLACK;         // assert check();     }

        // delete the key-value pair with the maximum key rooted at h

    删除最大值得过程跟删除最小值类似,也是给右子节点增加一个键,由于红链接都在左边,所以需要执行 if (isRed(h.left)) h = rotateRight(h);通过下图来理解,右节点l和它的兄弟节点都只有一个键,所以和左子节点规则一样从父节点和兄弟节点拿一个键与l组合起来,如果是右链接是红色可以直接通过flipcolor来实现,但红链接都在左边,所以中间加了一个roteright操作,再flipcolor就可以了。

        private Node deleteMax(Node h) {

    //下面的判断也可以放到moveRedRight中,这样下一句可以改成        if (h.right == null) return r.left;         if (isRed(h.left))             h = rotateRight(h);

    //从前面红黑树的构造图可以得出最大节点的左子节点要么为空,要么是个红链接的左子节点,但通过上面的rotateRight操作后

    最大节点的左子节点一定为空

            if (h.right == null)             return null;

            if (!isRed(h.right) && !isRed(h.right.left))             h = moveRedRight(h);

            h.right = deleteMax(h.right);

            return balance(h);     }

        /**      * Removes the specified key and its associated value from this symbol table           * (if the key is in this symbol table).          *      * @param  key the key      * @throws IllegalArgumentException if {@code key} is {@code null}      */     public void delete(Key key) {         if (key == null) throw new IllegalArgumentException("argument to delete() is null");         if (!contains(key)) return;

            // if both children of root are black, set root to red         if (!isRed(root.left) && !isRed(root.right))             root.color = RED;

            root = delete(root, key);         if (!isEmpty()) root.color = BLACK;         // assert check();     }

        // delete the key-value pair with the given key rooted at h

    删除操作结合了deleteMin/deleteMax和二叉查找树的delete操作     private Node delete(Node h, Key key) {         // assert get(h, key) != null;

    //说明待删除节点再左子树中,需要保证左子树中每个待检测的节点都含有2个及以上键,类似deletemin

            if (key.compareTo(h.key) < 0)  {             if (!isRed(h.left) && !isRed(h.left.left))                 h = moveRedLeft(h);             h.left = delete(h.left, key);         }

    //说明待删除节点是h节点或在右子树中,类似deletemax         else {             if (isRed(h.left))                 h = rotateRight(h);             if (key.compareTo(h.key) == 0 && (h.right == null))                 return null;             if (!isRed(h.right) && !isRed(h.right.left))                 h = moveRedRight(h);

    //如果待删除节点是h节点,进行二叉树的删除操作,从h.right中找出最小键替代h,

    这个操作其实相当于待删除的键是在h.right中,所以在进行删除前需要先执行上一句的moveRedRight保证h.right节点含有2个及以上的键             if (key.compareTo(h.key) == 0) {                 Node x = min(h.right);                 h.key = x.key;                 h.val = x.val;                 // h.val = get(h.right, min(h.right).key);                 // h.key = min(h.right).key;                 h.right = deleteMin(h.right);             }             else h.right = delete(h.right, key);         }         return balance(h);     }   

        // Assuming that h is red and both h.right and h.right.left     // are black, make h.right or one of its children red.     private Node moveRedRight(Node h) {         // assert (h != null);         // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);         flipColors(h);         if (isRed(h.left.left)) {             h = rotateRight(h);             flipColors(h);         }         return h;     }

        // restore red-black tree invariant     private Node balance(Node h) {         // assert (h != null);

            if (isRed(h.right))                      h = rotateLeft(h);         if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);         if (isRed(h.left) && isRed(h.right))     flipColors(h);

            h.size = size(h.left) + size(h.right) + 1;         return h;     }

       /***************************************************************************     *  Utility functions.     ***************************************************************************/

        /**      * Returns the height of the BST (for debugging).      * @return the height of the BST (a 1-node tree has height 0)      */     public int height() {         return height(root);     }     private int height(Node x) {         if (x == null) return -1;         return 1 + Math.max(height(x.left), height(x.right));     }

       /***************************************************************************     *  Ordered symbol table methods.     ***************************************************************************/

        /**      * Returns the smallest key in the symbol table.      * @return the smallest key in the symbol table      * @throws NoSuchElementException if the symbol table is empty      */     public Key min() {         if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");         return min(root).key;     }

        // the smallest key in subtree rooted at x; null if no such key     private Node min(Node x) {         // assert x != null;         if (x.left == null) return x;         else                return min(x.left);     }

        /**      * Returns the largest key in the symbol table.      * @return the largest key in the symbol table      * @throws NoSuchElementException if the symbol table is empty      */     public Key max() {         if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");         return max(root).key;     }

        // the largest key in the subtree rooted at x; null if no such key     private Node max(Node x) {         // assert x != null;         if (x.right == null) return x;         else                 return max(x.right);     }

        /**      * Returns the largest key in the symbol table less than or equal to {@code key}.      * @param key the key      * @return the largest key in the symbol table less than or equal to {@code key}      * @throws NoSuchElementException if there is no such key      * @throws IllegalArgumentException if {@code key} is {@code null}      */     public Key floor(Key key) {         if (key == null) throw new IllegalArgumentException("argument to floor() is null");         if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");         Node x = floor(root, key);         if (x == null) return null;         else           return x.key;     }    

        // the largest key in the subtree rooted at x less than or equal to the given key     private Node floor(Node x, Key key) {         if (x == null) return null;         int cmp = key.compareTo(x.key);         if (cmp == 0) return x;         if (cmp < 0)  return floor(x.left, key);         Node t = floor(x.right, key);         if (t != null) return t;         else           return x;     }

        /**      * Returns the smallest key in the symbol table greater than or equal to {@code key}.      * @param key the key      * @return the smallest key in the symbol table greater than or equal to {@code key}      * @throws NoSuchElementException if there is no such key      * @throws IllegalArgumentException if {@code key} is {@code null}      */     public Key ceiling(Key key) {         if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");         if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");         Node x = ceiling(root, key);         if (x == null) return null;         else           return x.key;       }

        // the smallest key in the subtree rooted at x greater than or equal to the given key     private Node ceiling(Node x, Key key) {           if (x == null) return null;         int cmp = key.compareTo(x.key);         if (cmp == 0) return x;         if (cmp > 0)  return ceiling(x.right, key);         Node t = ceiling(x.left, key);         if (t != null) return t;         else           return x;     }

        /**      * Return the key in the symbol table whose rank is {@code k}.      * This is the (k+1)st smallest key in the symbol table.      *      * @param  k the order statistic      * @return the key in the symbol table of rank {@code k}      * @throws IllegalArgumentException unless {@code k} is between 0 and      *        <em>n</em>–1      */     public Key select(int k) {         if (k < 0 || k >= size()) {             throw new IllegalArgumentException("argument to select() is invalid: " + k);         }         Node x = select(root, k);         return x.key;     }

        // the key of rank k in the subtree rooted at x     private Node select(Node x, int k) {         // assert x != null;         // assert k >= 0 && k < size(x);         int t = size(x.left);         if      (t > k) return select(x.left,  k);         else if (t < k) return select(x.right, k-t-1);         else            return x;     }

        /**      * Return the number of keys in the symbol table strictly less than {@code key}.      * @param key the key      * @return the number of keys in the symbol table strictly less than {@code key}      * @throws IllegalArgumentException if {@code key} is {@code null}      */     public int rank(Key key) {         if (key == null) throw new IllegalArgumentException("argument to rank() is null");         return rank(key, root);     }

        // number of keys less than key in the subtree rooted at x     private int rank(Key key, Node x) {         if (x == null) return 0;         int cmp = key.compareTo(x.key);         if      (cmp < 0) return rank(key, x.left);         else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);         else              return size(x.left);     }

       /***************************************************************************     *  Range count and range search.     ***************************************************************************/

        /**      * Returns all keys in the symbol table as an {@code Iterable}.      * To iterate over all of the keys in the symbol table named {@code st},      * use the foreach notation: {@code for (Key key : st.keys())}.      * @return all keys in the symbol table as an {@code Iterable}      */     public Iterable<Key> keys() {         if (isEmpty()) return new Queue<Key>();         return keys(min(), max());     }

        /**      * Returns all keys in the symbol table in the given range,      * as an {@code Iterable}.      *      * @param  lo minimum endpoint      * @param  hi maximum endpoint      * @return all keys in the sybol table between {@code lo}      *    (inclusive) and {@code hi} (inclusive) as an {@code Iterable}      * @throws IllegalArgumentException if either {@code lo} or {@code hi}      *    is {@code null}      */     public Iterable<Key> keys(Key lo, Key hi) {         if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");         if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");

            Queue<Key> queue = new Queue<Key>();         // if (isEmpty() || lo.compareTo(hi) > 0) return queue;         keys(root, queue, lo, hi);         return queue;     }

        // add the keys between lo and hi in the subtree rooted at x     // to the queue     private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {         if (x == null) return;         int cmplo = lo.compareTo(x.key);         int cmphi = hi.compareTo(x.key);         if (cmplo < 0) keys(x.left, queue, lo, hi);         if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);         if (cmphi > 0) keys(x.right, queue, lo, hi);     }

        /**      * Returns the number of keys in the symbol table in the given range.      *      * @param  lo minimum endpoint      * @param  hi maximum endpoint      * @return the number of keys in the sybol table between {@code lo}      *    (inclusive) and {@code hi} (inclusive)      * @throws IllegalArgumentException if either {@code lo} or {@code hi}      *    is {@code null}      */     public int size(Key lo, Key hi) {         if (lo == null) throw new IllegalArgumentException("first argument to size() is null");         if (hi == null) throw new IllegalArgumentException("second argument to size() is null");

            if (lo.compareTo(hi) > 0) return 0;         if (contains(hi)) return rank(hi) - rank(lo) + 1;         else              return rank(hi) - rank(lo);     }

       /***************************************************************************     *  Check integrity of red-black tree data structure.     ***************************************************************************/     private boolean check() {         if (!isBST())            StdOut.println("Not in symmetric order");         if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");         if (!isRankConsistent()) StdOut.println("Ranks not consistent");         if (!is23())             StdOut.println("Not a 2-3 tree");         if (!isBalanced())       StdOut.println("Not balanced");         return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();     }

        // does this binary tree satisfy symmetric order?     // Note: this test also ensures that data structure is a binary tree since order is strict     private boolean isBST() {         return isBST(root, null, null);     }

        // is the tree rooted at x a BST with all keys strictly between min and max     // (if min or max is null, treat as empty constraint)     // Credit: Bob Dondero's elegant solution     private boolean isBST(Node x, Key min, Key max) {         if (x == null) return true;         if (min != null && x.key.compareTo(min) <= 0) return false;         if (max != null && x.key.compareTo(max) >= 0) return false;         return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);     }

        // are the size fields correct?     private boolean isSizeConsistent() { return isSizeConsistent(root); }     private boolean isSizeConsistent(Node x) {         if (x == null) return true;         if (x.size != size(x.left) + size(x.right) + 1) return false;         return isSizeConsistent(x.left) && isSizeConsistent(x.right);     }

        // check that ranks are consistent     private boolean isRankConsistent() {         for (int i = 0; i < size(); i++)             if (i != rank(select(i))) return false;         for (Key key : keys())             if (key.compareTo(select(rank(key))) != 0) return false;         return true;     }

        // Does the tree have no red right links, and at most one (left)     // red links in a row on any path?     private boolean is23() { return is23(root); }     private boolean is23(Node x) {         if (x == null) return true;         if (isRed(x.right)) return false;         if (x != root && isRed(x) && isRed(x.left))             return false;         return is23(x.left) && is23(x.right);     }

        // do all paths from root to leaf have same number of black edges?     private boolean isBalanced() {         int black = 0;     // number of black links on path from root to min         Node x = root;         while (x != null) {             if (!isRed(x)) black++;             x = x.left;         }         return isBalanced(root, black);     }

        // does every path from the root to a leaf have the given number of black links?     private boolean isBalanced(Node x, int black) {         if (x == null) return black == 0;         if (!isRed(x)) black--;         return isBalanced(x.left, black) && isBalanced(x.right, black);     }

        /**      * Unit tests the {@code RedBlackBST} data type.      *      * @param args the command-line arguments      */     public static void main(String[] args) {         RedBlackBST<String, Integer> st = new RedBlackBST<String, Integer>();         for (int i = 0; !StdIn.isEmpty(); i++) {             String key = StdIn.readString();             st.put(key, i);         }         for (String s : st.keys())             StdOut.println(s + " " + st.get(s));         StdOut.println();     }

    }

     

    最新回复(0)