CVPR 2018 Session 1-1B:Analyzing Humans in Image I

    xiaoxiao2023-11-15  170

    CVPR 2018 Session 1-1B:Analyzing Humans in Image I

    Oral1. [A7] Finding Tiny Faces in the Wild With Generative Adversarial Network, (小区域人脸识别)2. [A10] Learning Face Age Progression: A Pyramid Architecture of GANs, (GAN年龄生成)3. [B2] PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup, (风格迁移) Spotlights (S1-1B)1. [B5] GANerated Hands for Real-Time 3D Hand Tracking From Monocular RGB, (姿态估计 输入图像输出3D姿态)2. [B8] Learning Pose Specific Representations by Predicting Different Views, (半监督人体语意分割)3. [B14] Person Transfer GAN to Bridge Domain Gap for Person Re-Identification, (复杂场景数据集风格不统一)4. [B17] Cross-Modal Deep Variational Hand Pose Estimation, (3D手势姿势)5. [B20] Disentangled Person Image Generation, (生成模型学习)6. [C1] Super-FAN: Integrated Facial Landmark Localization and Super-Resolution of Real-World Low Resolution Faces in Arbitrary Poses With GANs, (面部标定与低分辨率人脸姿态)7. [C4] Multistage Adversarial Losses for Pose-Based Human Image Synthesis, (多角度人体位置合成)

    Oral

    1. [A7] Finding Tiny Faces in the Wild With Generative Adversarial Network, (小区域人脸识别)

    小区域人脸识别: Yancheng Bai, Yongqiang Zhang, Mingli Ding, Bernard Ghanem KAUST

    【问题】图像中的小像素的人脸难识别(Eg. 3x3像素人脸),图像金字塔会模糊图像;【创新 #Step1】Super-Resolution+Refinement Network 产生尖锐的图像;discriminator 判别“真假人脸”与“是否人脸”;【创新 #Step2】使用MB-FCN探测器作为Baseline,训练 生成器和判别器;【创新 #Step3】Gan Network的Loss可以看作min-max的问题(使用GANZ);

    2. [A10] Learning Face Age Progression: A Pyramid Architecture of GANs, (GAN年龄生成)

    GAN年龄生成: Hongyu Yang, Di Huang, Yunhong Wang, Anil K. Jain

    传统的人脸年龄研究方法: 基于机器仿真(Mechanical simulation based);基于老化函数(Aging function based);基于原始模型(Prototyping pattern based); 存在限制: 年龄处理具有复杂性(Complex);机器仿真难以精确表示年龄(cannot be accurately formulated);年龄的数据不够充足(not rich enough);

    Paper内容:

    【问题】准确预测年龄、无法保留身份特征、生成完全人脸 前额和头发有影响;【动机】GAN网络年龄生成器、identity cue preservation in a coupled manner、Handling age transformation in a fine-grained way;【方法】Loss:Age Transformation Loss + Identity Preservation Loss + Piel Level Loss;【数据集】MORPH + CACD + FG-NET;【评价指标】Visual Fidelity、Aging Accuracy、Identity Permanence、Comparison to State-Of-The-Art;【总结】GAN网络年龄生成方法、判别器提成年龄合成的准确度 、提升有效性和鲁棒性;

    3. [B2] PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup, (风格迁移)

    风格迁移: Huiwen Chang, Jingwan Lu, Fisher Yu, Adam Finkelstein

    【问题】有图像作为输入,不知图像的对称输出;【解决】使用Asymmetric,风格迁移对应两个不对称函数: 前向 Forward:传递化妆风格;后向 Backward:删除化妆风格; 【创新】建立两个耦合网络,轮换训练 最终生成的图片效果为原图; 【方法】迁移化妆 - 五官segmentation问题:增加phase passer,各个提取五官训练;【实验和问题】使用Resnet效果更好,但重建面部无法还原细节;

    Spotlights (S1-1B)

    1. [B5] GANerated Hands for Real-Time 3D Hand Tracking From Monocular RGB, (姿态估计 输入图像输出3D姿态)

    姿态估计 输入图像输出3D姿态: Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, Christian Theobalt

    输入手势图片输出3D手势

    【方法】训练数据集:使用3D软件生成;

    2. [B8] Learning Pose Specific Representations by Predicting Different Views, (半监督人体语意分割)

    半监督人体语意分割: Georg Poier, David Schinagl, Horst Bischof

    由人体相似性 给未标记的人体部位做语意分割;

    方法: 找到数据集中相似的人体;生成部分先验,做粗略标注;用FCN,对标签做图像细化;

    3. [B14] Person Transfer GAN to Bridge Domain Gap for Person Re-Identification, (复杂场景数据集风格不统一)

    复杂场景数据集风格不统一: Longhui Wei, Shiliang Zhang, Wen Gao, Qi Tian

    【问题】现有数据集不能模拟真实情况: 数据集:小区域、固定场景、拍摄时间跨度、固定照明条件;真实条件:大范围、复杂场景、长时间跨度;不同数据集训练范化不好:不同 光照、背景、摄影参数;We need to bridge Domain Gap; 【创新】贡献MSMT17,有15个相机同时拍摄;【创新】使用PTGAN转换:背景、光照,同时保持身份不变;对比CycleGan,PTGAN有效保持身份信息;数据集:CUHK03、PRID、MSMT17、Market、VIPeR;

    4. [B17] Cross-Modal Deep Variational Hand Pose Estimation, (3D手势姿势)

    3D手势姿势: Adrian Spurr, Jie Song, Seonwook Park, Otmar Hilliges

    【问题】预测3D手势姿势 遇到遮挡 从数据中学习多种多样的分布;在输入方式中是一致的; 【方法】检索手部关节 从特征点分布预测手姿势; 【方法】cross-modal 训练 (PS:多模态学习);

    5. [B20] Disentangled Person Image Generation, (生成模型学习)

    生成模型学习 (Foreground Background Pose): Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc Van Gool, Bernt Schiele, Mario Fritz

    【任务】合成单独控制 “前向 后向 和 姿势”【关键点】分解人物到三个部分然后合并;【方法】Pix2Pix、CycleGAN、PG2 相结合; Stage-1: 训练Embedding Feature;Stage-2: 利用高斯分布训练Embedding Feature;

    6. [C1] Super-FAN: Integrated Facial Landmark Localization and Super-Resolution of Real-World Low Resolution Faces in Arbitrary Poses With GANs, (面部标定与低分辨率人脸姿态)

    面部标定与低分辨率人脸姿态: Adrian Bulat, Georgios Tzimiropoulos 1. 【方法】提高分辨率 引入新的结构损失为基础; 2. 【方法】网络结构: 3. 【创新】Heatmaps Loss 保护面部结构; 4. PSNR - 峰值信噪比;SSIM - 结构相似性:亮度 对比度 结构 比较;


    7. [C4] Multistage Adversarial Losses for Pose-Based Human Image Synthesis, (多角度人体位置合成)

    多角度人体位置合成: Chenyang Si, Wei Wang, Liang Wang, Tieniu Tan

    【方法】基于位置的人体图像和成方法;【方法】多级对抗性损失;数据集: Human 3.6M;
    最新回复(0)