分别是heapq和queue.PriorityQueue这两个模块
import heapq
from queue import PriorityQueue as PQ
PriorityQueue模块定义如下所示:
class PriorityQueue(Queue):
'''Variant of Queue that retrieves open entries in priority order (lowest first).
Entries are typically tuples of the form: (priority number, data).
'''
def _init(self, maxsize):
self.queue = []
def _qsize(self):
return len(self.queue)
def _put(self, item):
heappush(self.queue, item)
def _get(self):
return heappop(self.queue)
他含有一个属性queue,输出队列中每个元素,三个方法,分别是qsize(),代表优先级队列中元素个数,put(),用heappush()方法将元素放入队列,get(),用heappop()方法将元素从队列取出。注意这个库在解答leetcode相关问题时(比如top-K问题,leetcode-215,347等)不能用。
例子如下
from queue import PriorityQueue as PQ
pq = PQ()
pq.put((-2, 'c'))
pq.put((-3, 'b'))
pq.put((-4,'a'))
pq.queue # output: [(-4, 'a'), (-2, 'c'), (-3, 'b')]
#只能是最小堆,所以按照元素从小到大(如果元素是list或者tuple,那么以第一个元素的顺序)的顺序出队
pq.get() # output: (-4, 'a')
#每当堆首元素出队后,剩下的元素又会重新排成堆
pq.get() #output: [(-3, 'b'), (-2, 'c')]
pq.get() # output: (-3,'b')
pq.get() # output: (-2,'c')
#最后结果为空
pq.queue # output:[]
heappush模块代码如下,功能:将item添加到当前最小堆最后,并再恢复成最小堆(只是把元素插到堆尾再调整,之前已经是堆了,现在只有最后一个元素可能不满足堆得要求,调整也只会沿着一条路径自底向上,时间复杂度O(lgn))
def heappush(heap, item):
"""Push item onto heap, maintaining the heap invariant."""
heap.append(item)
_siftdown(heap, 0, len(heap)-1)
def _siftdown(heap, startpos, pos):
newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
parentpos = (pos - 1) >> 1
parent = heap[parentpos]
if newitem < parent:
heap[pos] = parent
pos = parentpos
continue
break
heap[pos] = newitem
heappop模块代码如下,功能:当前最小堆中首元素,再将当前堆尾元素放在堆首,之后将这个列表再回复成堆。(只是把元素插到堆首再调整,之前已经是堆了,现在只有第一个元素可能不满足堆得要求,调整也只会沿着一条路径从根节点向下,时间复杂度O(lgn))
def heappop(heap):
"""Pop the smallest item off the heap, maintaining the heap invariant."""
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
if heap:
returnitem = heap[0]
heap[0] = lastelt
_siftup(heap, 0)
return returnitem
return lastelt
def _siftup(heap, pos):
endpos = len(heap)
startpos = pos
newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
childpos = 2*pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
rightpos = childpos + 1
if rightpos < endpos and not heap[childpos] < heap[rightpos]:
childpos = rightpos
# Move the smaller child up.
heap[pos] = heap[childpos]
pos = childpos
childpos = 2*pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
# to its final resting place (by sifting its parents down).
heap[pos] = newitem
_siftdown(heap, startpos, pos)
def _siftdown(heap, startpos, pos):
newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
parentpos = (pos - 1) >> 1
parent = heap[parentpos]
if newitem < parent:
heap[pos] = parent
pos = parentpos
continue
break
heap[pos] = newitem
heapfiy模块代码如下,功能:在O(len(x))时间复杂度将列表x原地转换成最小堆
def heapify(x):
"""Transform list into a heap, in-place, in O(len(x)) time."""
n = len(x)
# Transform bottom-up. The largest index there's any point to looking at
# is the largest with a child index in-range, so must have 2*i + 1 < n,
# or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
# j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is
# (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
for i in reversed(range(n//2)):
_siftup(x, i)
这个某块可以直接使用使用,通过import heapq,所以当在leetcode中遇到top-K或类似问题需要用到优先队列时(Python),不需要用优先队列了,直接用堆即可,不过注意python中的heapq只是最小堆,如果需要最大堆,那么在把元素入堆的时候需要加负号。并且最后输出结果的时候也要加负号,然后在逆序输出。
下面以leetcode-215和leetcode-347题目的用优先队列和堆的解法来进一步了解两者的关系。
leetcode-215
class Solution:
def findKthLargest(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
import heapq
#heapq中直接有这个函数
return heapq.nlargest(k, nums)[-1]
# 用堆,时间复杂度O(N + klog(N))
class Solution:
def findKthLargest(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
import heapq
# heapify只能创建一个最小堆,所以加负号,但根据题目意思应该用最大堆
nums = [-num for num in nums]
heapq.heapify(nums)
res = float('inf')
for _ in range(k):
res = heapq.heappop(nums)
return -res
leetcode-347
# top-K问题常用解题思路,用优先队列,时间复杂度O(nlgk)
# 维护一个含有k个元素的优先队列。如果遍历到的元素比队列中的最小频率元素的频率高,则取出队列中最小频率
# 的元素,将新元素入队。最终,队列中剩下的,就是前k个出现频率最高的元素。
class Solution(object):
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
freq = {}
for num in nums:
if num not in freq:
freq[num] = 1
else:
freq[num] += 1
# 扫描数组,维护当前出现频率最高的k个元素
# 在优先队列中,按照频率排序,所以数据对是(频率,元素)的形式
# python的堆只有最小堆,优先队列就是用堆实现的,所以优先队列也只有最小优先队列
from queue import PriorityQueue as PQ
pq = PQ()
for v, f in freq.items():
if pq.qsize() == k:
(fr, va) = pq.get()
# pq只是最小优先队列,为了实现最大优先队列,所以需要取负数
if -f > -fr:
pq.put((-f, v))
else:
pq.put((fr, va))
else:
pq.put((-f, v))
res = []
while pq.queue:
res.append((pq.get()[1]))
return res
#上面用优先队列只是为了了解这个模块中优先队列的用法,实际上用起来也不方便,可以看到上面写的很繁琐,
不易懂,而且在leetcode上面提交还会显示ImportError: No module named queue
class Solution(object):
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
# 上面的优先队列就是用heapq实现的,所以这里直接使用heapq堆
import heapq
freq = {}
res = []
for num in nums:
if num not in freq:
freq[num] = 1
else:
freq[num] += 1
# 1.我们需要按照数字出现频率进行排序,所以val在前,key在后
# 2.我们需要最大堆,但是heapq只实现了最小堆,所以加个负号,模拟最大堆
max_heap = [(-val, key) for key, val in freq.items()]
heapq.heapify(max_heap)
for i in range(k):
res.append(heapq.heappop(max_heap)[1])
return res
nums = [1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7]
k = 4
print(Solution().topKFrequent(nums, k))
参考
最小堆 构建、插入、删除的过程图解 排序算法总结-堆排序