tensorflow6-构造简单的RNN(LSTM)

    xiaoxiao2023-11-20  162

    神经网络的结构:

    输入层--> 隐藏层 ---> 输出层

    输入层 : 28*28

    隐藏层 : 10 个

    输出层 :10

    LSTM 的原理在这里不做赘述,仅仅是为了了解代码的实现过程

     

    代码如下:

    # -*- coding: utf-8 -*- """ Created on Sat May 25 20:19:28 2019 @author: 666 """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib import rnn #载入数据集 mnist = input_data.read_data_sets('F:/AI/AItest/MNIST_data/',one_hot=True) #定义参数 #输入一行,一行有28个数据 n_input = 28 #一共有28行 max_time = 28 #100个隐藏单元 lstm_size = 10 #10分类 n_class = 10 #每批次分50个样本 batch_size = 50 #一共有n_batch个批次 n_batch = mnist.train.num_examples #定义输入 with tf.name_scope('input'): x = tf.placeholder(tf.float32,[None,784],name='x-input') y = tf.placeholder(tf.float32,[None,10],name='y-input') #初始化权重值 weights = tf.Variable(tf.truncated_normal([lstm_size,n_class],stddev=0.1)) biases = tf.Variable(tf.constant(0.1,shape=[n_class])) #定义RNN网络 def RNN(X,weights,biases): with tf.name_scope('RNN'): #input = [batch_size,max_time,n_input] inputs = tf.reshape(X,[-1,max_time,n_input]) #定义LSTM基本的cell lstm_cell = rnn.BasicLSTMCell(lstm_size) #final_state[0] 是 cell state #final_state[1] 是 hidden_state outputs,final_state = tf.nn.dynamic_rnn(lstm_cell, inputs, dtype=tf.float32) results = tf.nn.softmax(tf.matmul(final_state[1],weights) + biases) return results prediction = RNN(x,weights,biases) #损失函数 with tf.name_scope('loss'): loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= prediction,labels=y)) #优化器 with tf.name_scope('optimizer'): train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) #结果存在一个bool类型的值中 correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #求准确率 with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(21): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.train.labels}) print('Iter '+ str(epoch) + " , Test accuracy = " + str(acc) )

     

     

    最新回复(0)