1. 什么是垃圾回收机制
不定时去堆内存中清理不可达对象。不可达的对象并不会马上就会直接回收, 垃圾收集器在一个Java程序中的执行是自动的,不能强制执行,即使程序员能明确地判断出有一块内存已经无用了,是应该回收的,程序员也不能强制垃圾收集器回收该内存块。程序员唯一能做的就是通过调用System.gc 方法来"建议"执行垃圾收集器,但其是否可以执行,什么时候执行却都是不可知的。这也是垃圾收集器的最主要的缺点。当然相对于它给程序员带来的巨大方便性而言,这个缺点是瑕不掩瑜的。 public class Test { public static void main(String[] args) { Test test = new Test(); test = null; System.gc(); // 手动回收垃圾 } @Override protected void finalize() throws Throwable { // gc回收垃圾之前调用 System.out.println("垃圾回收机制..."); } }2. finalize方法作用
Java技术使用finalize()方法在垃圾收集器将对象从内存中清除出去前,做必要的清理工作。这个方法是由垃圾收集器在确定这个对象没有被引用时对这个对象调用的。它是在Object类中定义的,因此所有的类都继承了它。子类覆盖finalize()方法以整理系统资源或者执行其他清理工作。finalize()方法是在垃圾收集器删除对象之前对这个对象调用的。3. 新生代与老年代
Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象。 在 Java 中,堆被划分成两个不同的区域:新生代 ( Young )、老年代 ( Old )。新生代 ( Young ) 又被划分为三个区域:Eden、From Survivor、To Survivor。 这样划分的目的是为了使 JVM 能够更好的管理堆内存中的对象,包括内存的分配以及回收。 堆的内存模型大致为: 默认的,新生代 ( Young ) 与老年代 ( Old ) 的比例的值为 1:2 ( 该值可以通过参数 –XX:NewRatio 来指定 ),即:新生代 ( Young ) = 1/3 的堆空间大小。老年代 ( Old ) = 2/3 的堆空间大小。其中,新生代 ( Young ) 被细分为 Eden 和 两个 Survivor 区域,这两个 Survivor 区域分别被命名为 from 和 to,以示区分。 默认的,Edem : from : to = 8 : 1 : 1 ( 可以通过参数 –XX:SurvivorRatio 来设定 ),即: Eden = 8/10 的新生代空间大小,from = to = 1/10 的新生代空间大小。 根据垃圾回收机制的不同,Java堆有可能拥有不同的结构,最为常见的就是将整个Java堆分为 新生代和老年代。其中新生带存放新生的对象或者年龄不大的对象,老年代则存放老年对象。 新生代分为den区、s0区、s1区,s0和s1也被称为from和to区域,他们是两块大小相等并且可以互相角色的空间。 绝大多数情况下,对象首先分配在eden区,在新生代回收后,如果对象还存活,则进入s0或s1区,之后每经过一次 新生代回收,如果对象存活则它的年龄就加1,对象达到一定的年龄后,一般是15岁(计数15次),则进入老年代。4. 对象已死? 判断方法: 1)引用计数法
什么是引用计数算法:给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值加1;当引用失效时,计数器值减1.任何时刻计数器值为0的对象就是不可能再被使用的。那为什么主流的Java虚拟机里面都没有选用这种算法呢?其中最主要的原因是它很难解决对象之间相互循环引用的问题。2)根搜索算法
根搜索算法的基本思路就是通过一系列名为”GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。 这个算法的基本思想是通过一系列称为“GC Roots”的对象作为起始点,从这些节点向下搜索,搜索所走过的路径称为引用链,当一个对象到GC Roots没有任何引用链(即GC Roots到对象不可达)时,则证明此对象是不可用的。 那么问题又来了,如何选取GCRoots对象呢?在Java语言中,可以作为GCRoots的对象包括下面几种: (1). 虚拟机栈(栈帧中的局部变量区,也叫做局部变量表)中引用的对象。 (2). 方法区中的类静态属性引用的对象。 (3). 方法区中常量引用的对象。 (4). 本地方法栈中JNI(Native方法)引用的对象。 下面给出一个GCRoots的例子,如下图,为GCRoots的引用链。根搜索算法的基本思路就是通过一系列名为”GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。 从上图,reference1、reference2、reference3都是GC Roots,可以看出: reference1-> 对象实例1; reference2-> 对象实例2; reference3-> 对象实例4; reference3-> 对象实例4 -> 对象实例6; 可以得出对象实例1、2、4、6都具有GC Roots可达性,也就是存活对象,不能被GC回收的对象。 而对于对象实例3、5直接虽然连通,但并没有任何一个GC Roots与之相连,这便是GC Roots不可达的对象,这就是GC需要回收的垃圾对象。
4. 垃圾回收机制策略(垃圾回收算法) 4.1 标记清除算法 概念:
该算法有两个阶段。 1. 标记阶段:找到所有可访问的对象,做个标记 2. 清除阶段:遍历堆,把未被标记的对象回收应用场景
该算法一般应用于老年代,因为老年代的对象生命周期比较长。优缺点
标记清除算法的优点和缺点 1. 优点 - 是可以解决循环引用的问题 - 必要时才回收(内存不足时) 2. 缺点: - 回收时,应用需要挂起,也就是stop the world。 - 标记和清除的效率不高,尤其是要扫描的对象比较多的时候 - 会造成内存碎片(会导致明明有内存空间,但是由于不连续,申请稍微大一些的对象无法做到)4.2 复制算法 概念
如果jvm使用了coping算法,一开始就会将可用内存分为两块,from域和to域, 每次只是使用from域,to域则空闲着。当from域内存不够了,开始执行GC操作,这个时候,会把from域存活的对象拷贝到to域,然后直接把from域进行内存清理。应用场景
coping算法一般是使用在新生代中,因为新生代中的对象一般都是朝生夕死的,存活对象的数量并不多,这样使用coping算法进行拷贝时效率比较高。jvm将Heap 内存划分为新生代与老年代,又将新生代划分为Eden(伊甸园) 与2块Survivor Space(幸存者区) ,然后在Eden –>Survivor Space 以及From Survivor Space 与To Survivor Space 之间实行Copying 算法。 不过jvm在应用coping算法时,并不是把内存按照1:1来划分的,这样太浪费内存空间了。一般的jvm都是8:1。也即是说,Eden区:From区:To区域的比例是 始终有90%的空间是可以用来创建对象的,而剩下的10%用来存放回收后存活的对象。 1、当Eden区满的时候,会触发第一次young gc,把还活着的对象拷贝到Survivor From区;当Eden区再次触发young gc的时候,会扫描Eden区和From区域,对两个区域进行垃圾回收,经过这次回收后还存活的对象,则直接复制到To区域,并将Eden和From区域清空。 2、当后续Eden又发生young gc的时候,会对Eden和To区域进行垃圾回收,存活的对象复制到From区域,并将Eden和To区域清空。 3、可见部分对象会在From和To区域中复制来复制去,如此交换15次(由JVM参数MaxTenuringThreshold决定,这个参数默认是15),最终如果还是存活,就存入到老年代 注意: 万一存活对象数量比较多,那么To域的内存可能不够存放,这个时候会借助老年代的空间。优缺点
优点:在存活对象不多的情况下,性能高,能解决内存碎片和java垃圾回收算法之-标记清除 中导致的引用更新问题。 缺点: 会造成一部分的内存浪费。不过可以根据实际情况,将内存块大小比例适当调整;如果存活对象的数量比较大,coping的性能会变得很差。4.3 标记压缩算法
标记清除算法和标记压缩算法非常相同,但是标记压缩算法在标记清除算法之上解决内存碎片化概念 压缩算法简单介绍
任意顺序 : 即不考虑原先对象的排列顺序,也不考虑对象之间的引用关系,随意移动对象; 线性顺序 : 考虑对象的引用关系,例如a对象引用了b对象,则尽可能将a和b移动到一块; 滑动顺序 : 按照对象原来在堆中的顺序滑动到堆的一端。优缺点
优点:解决内存碎片问题,缺点压缩阶段,由于移动了可用对象,需要去更新引用。4.4 分代算法 概述
这种算法,根据对象的存活周期的不同将内存划分成几块,新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。可以用抓重点的思路来理解这个算法。 新生代对象朝生夕死,对象数量多,只要重点扫描这个区域,那么就可以大大提高垃圾收集的效率。另外老年代对象存储久,无需经常扫描老年代,避免扫描导致的开销。新生代
在新生代,每次垃圾收集器都发现有大批对象死去,只有少量存活,采用复制算法,只需要付出少量存活对象的复制成本就可以完成收集;可以参看我之前写的java垃圾回收算法之-coping复制老年代
而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须“标记-清除-压缩”算法进行回收。参看java垃圾回收算法之-标记_清除压缩 新创建的对象被分配在新生代,如果对象经过几次回收后仍然存活,那么就把这个对象划分到老年代。 老年代区存放Young区Survivor满后触发minor GC后仍然存活的对象,当Eden区满后会将存活的对象放入Survivor区域,如果Survivor区存不下这些对象,GC收集器就会将这些对象直接存放到Old区中,如果Survivor区中的对象足够老,也直接存放到Old区中。如果Old区满了,将会触发Full GC回收整个堆内存。JVM参数配置
JVM提供了诸多的参数进行JVM各个方面内存大小的设置,为Java应用进行优化提供了诸多的工具,本文将会详细分析各个参数的功能与使用。常见参数配置
-XX:+PrintGC 每次触发GC的时候打印相关日志 -XX:+UseSerialGC 串行回收 -XX:+PrintGCDetails 更详细的GC日志 -Xms 堆初始值 -Xmx 堆最大可用值 -Xmn 新生代堆最大可用值 -XX:SurvivorRatio 用来设置新生代中eden空间和from/to空间的比例. -XX:NewRatio 配置新生代与老年代占比 1:2 含以-XX:SurvivorRatio=eden/from=den/to 总结:在实际工作中,我们可以直接将初始的堆大小与最大堆大小相等, 这样的好处是可以减少程序运行时垃圾回收次数,从而提高效率。 -XX:SurvivorRatio 用来设置新生代中eden空间和from/to空间的比例.堆内存大小配置
使用示例: -Xmx20m -Xms5m 说明: 当下Java应用最大可用内存为20M, 初始内存为5M // byte[] b = new byte[4 * 1024 * 1024]; // System.out.println("分配了4M空间给数组"); System.out.print("最大内存"); System.out.println(Runtime.getRuntime().maxMemory() / 1024.0 / 1024 + "M"); System.out.print("可用内存"); System.out.println(Runtime.getRuntime().freeMemory() / 1024.0 / 1024 + "M"); System.out.print("已经使用内存"); System.out.println(Runtime.getRuntime().totalMemory() / 1024.0 / 1024 + "M");设置新生代比例参数
使用示例:-Xms20m -Xmx20m -Xmn1m -XX:SurvivorRatio=2 -XX:+PrintGCDetails -XX:+UseSerialGC 说明:堆内存初始化值20m,堆内存最大值20m,新生代最大值可用1m,eden空间和from/to空间的比例为2/1 byte[] b = null; for (int i = 0; i < 10; i++) { b = new byte[1 * 1024 * 1024]; }设置新生代与老年代比例参数
使用示例: -Xms20m -Xmx20m -XX:SurvivorRatio=2 -XX:+PrintGCDetails -XX:+UseSerialGC -XX:NewRatio=2 说明:堆内存初始化值20m,堆内存最大值20m,新生代最大值可用1m,eden空间和from/to空间的比例为2/1 新生代和老年代的占比为1/2实战OutOfMemoryError异常
错误原因: java.lang.OutOfMemoryError: Java heap space 堆内存溢出 解决办法:设置堆内存大小 // -Xms1m -Xmx10m -XX:+PrintGCDetails -XX:+HeapDumpOnOutOfMemoryError // -Xms1m -Xmx10m -XX:+PrintGCDetails -XX:+HeapDumpOnOutOfMemoryError List<Object> listObject = new ArrayList<>(); for (int i = 0; i < 10; i++) { System.out.println("i:" + i); Byte[] bytes = new Byte[1 * 1024 * 1024]; listObject.add(bytes); } System.out.println("添加成功...");虚拟机栈溢出
错误原因: java.lang.StackOverflowError 栈内存溢出 栈溢出 产生于递归调用,循环遍历是不会的,但是循环方法里面产生递归调用, 也会发生栈溢出。 解决办法:设置线程最大调用深度 -Xss5m 设置最大调用深度 public class JvmDemo04 { private static int count; public static void count(){ try { count++; count(); } catch (Throwable e) { System.out.println("最大深度:"+count); e.printStackTrace(); } } public static void main(String[] args) { count(); } }内存溢出与内存泄漏区别
Java内存泄漏就是没有及时清理内存垃圾,导致系统无法再给你提供内存资源(内存资源耗尽); 而Java内存溢出就是你要求分配的内存超出了系统能给你的,系统不能满足需求,于是产生溢出。 内存溢出,这个好理解,说明存储空间不够大。就像倒水倒多了,从杯子上面溢出了来了一样。 内存泄漏,原理是,使用过的内存空间没有被及时释放,长时间占用内存,最终导致内存空间不足,而出现内存溢出。垃圾收集器 串行与并行收集器
串行回收: JDK1.5前的默认算法 缺点是只有一个线程,执行垃圾回收时程序停止的时间比较长 并行回收: 多个线程执行垃圾回收适合于吞吐量的系统,回收时系统会停止运行 serial收集器 串行收集器是最古老,最稳定以及效率高的收集器,可能会产生较长的停顿,只使用一个线程去回收。新生代、老年代使用串行回收;新生代复制算法、老年代标记-压缩;垃圾收集的过程中会Stop The World(服务暂停) 一个单线程的收集器,在进行垃圾收集时候,必须暂停其他所有的工作线程直到它收集结束。 特点:CPU利用率最高,停顿时间即用户等待时间比较长。 适用场景:小型应用 通过JVM参数-XX:+UseSerialGC可以使用串行垃圾回收器。ParNew收集器
ParNew收集器其实就是Serial收集器的多线程版本。新生代并行,老年代串行;新生代复制算法、老年代标记-压缩 参数控制:-XX:+UseParNewGC ParNew收集器 -XX:ParallelGCThreads 限制线程数量parallel 收集器
Parallel Scavenge收集器类似ParNew收集器,Parallel收集器更关注系统的吞吐量。可以通过参数来打开自适应调节策略,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或最大的吞吐量;也可以通过参数控制GC的时间不大于多少毫秒或者比例;新生代复制算法、老年代标记-压缩 采用多线程来通过扫描并压缩堆 特点:停顿时间短,回收效率高,对吞吐量要求高。 适用场景:大型应用,科学计算,大规模数据采集等。 通过JVM参数 XX:+USeParNewGC 打开并发标记扫描垃圾回收器。cms收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。 从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤,包括: 初始标记(CMS initial mark) 并发标记(CMS concurrent mark) 重新标记(CMS remark) 并发清除(CMS concurrent sweep) 其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。 由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行。老年代收集器(新生代使用ParNew) 优点:并发收集、低停顿 缺点:产生大量空间碎片、并发阶段会降低吞吐量 采用“标记-清除”算法实现,使用多线程的算法去扫描堆,对发现未使用的对象进行回收。 (1)初始标记 (2)并发标记 (3)并发预处理 (4)重新标记 (5)并发清除 (6)并发重置 特点:响应时间优先,减少垃圾收集停顿时间 适应场景:大型服务器等。 通过JVM参数 -XX:+UseConcMarkSweepGC设置g1收集器
在G1中,堆被划分成 许多个连续的区域(region)。采用G1算法进行回收,吸收了CMS收集器特点。 特点:支持很大的堆,高吞吐量 --支持多CPU和垃圾回收线程 --在主线程暂停的情况下,使用并行收集 --在主线程运行的情况下,使用并发收集 实时目标:可配置在N毫秒内最多只占用M毫秒的时间进行垃圾回收 通过JVM参数 -XX:+UseG1GC 使用G1垃圾回收器 注意: 并发是指一个处理器同时处理多个任务。 并行是指多个处理器或者是多核的处理器同时处理多个不同的任务。 并发是逻辑上的同时发生(simultaneous),而并行是物理上的同时发生。 来个比喻:并发是一个人同时吃三个馒头,而并行是三个人同时吃三个馒头。