深入理解Spark:核心思想与源码分析. 3.8 TaskScheduler的启动

    xiaoxiao2024-01-06  200

    3.8 TaskScheduler的启动

    3.6节介绍了任务调度器TaskScheduler的创建,要想TaskScheduler发挥作用,必须要启动它,代码如下。

    taskScheduler.start()

    TaskScheduler在启动的时候,实际调用了backend的start方法。

    override def start() {

            backend.start()

        }

    以LocalBackend为例,启动LocalBackend时向actorSystem注册了LocalActor,见代码清单3-30所示。

    3.8.1 创建LocalActor

    创建LocalActor的过程主要是构建本地的Executor,见代码清单3-36。

    代码清单3-36 LocalActor的实现

    private[spark] class LocalActor(scheduler: TaskSchedulerImpl, executorBackend: LocalBackend,

        private val totalCores: Int) extends Actor with ActorLogReceive with Logging {

        import context.dispatcher   // to use Akka's scheduler.scheduleOnce()

        private var freeCores = totalCores

        private val localExecutorId = SparkContext.DRIVER_IDENTIFIER

        private val localExecutorHostname = "localhost"

     

        val executor = new Executor(

            localExecutorId, localExecutorHostname, scheduler.conf.getAll, totalCores, isLocal = true)

     

        override def receiveWithLogging = {

            case ReviveOffers =>

                reviveOffers()

     

            case StatusUpdate(taskId, state, serializedData) =>

                scheduler.statusUpdate(taskId, state, serializedData)

                if (TaskState.isFinished(state)) {

                    freeCores += scheduler.CPUS_PER_TASK

                    reviveOffers()

                }

     

            case KillTask(taskId, interruptThread) =>

                executor.killTask(taskId, interruptThread)

     

            case StopExecutor =>

                executor.stop()

        }

     

    }

    Executor的构建,见代码清单3-37,主要包括以下步骤。

    1)创建并注册ExecutorSource。ExecutorSource是做什么的呢?笔者将在3.8.2节详细介绍。

    2)获取SparkEnv。如果是非local模式,Worker上的CoarseGrainedExecutorBackend向Driver上的CoarseGrainedExecutorBackend注册Executor时,则需要新建SparkEnv。可以修改属性spark.executor.port(默认为0,表示随机生成)来配置Executor中的ActorSystem的端口号。

    3)创建并注册ExecutorActor。ExecutorActor负责接受发送给Executor的消息。

    4)urlClassLoader的创建。为什么需要创建这个ClassLoader?在非local模式中,Driver或者Worker上都会有多个Executor,每个Executor都设置自身的urlClassLoader,用于加载任务上传的jar包中的类,有效对任务的类加载环境进行隔离。

    5)创建Executor执行Task的线程池。此线程池用于执行任务。

    6)启动Executor的心跳线程。此线程用于向Driver发送心跳。

    此外,还包括Akka发送消息的帧大小(10 485 760字节)、结果总大小的字节限制(1 073 741 824字节)、正在运行的task的列表、设置serializer的默认ClassLoader为创建的ClassLoader等。

    代码清单3-37 Executor的构建

        val executorSource = new ExecutorSource(this, executorId)

    private val env = {

            if (!isLocal) {

                val port = conf.getInt("spark.executor.port", 0)

                val _env = SparkEnv.createExecutorEnv(

                    conf, executorId, executorHostname, port, numCores, isLocal, actorSystem)

                SparkEnv.set(_env)

                _env.metricsSystem.registerSource(executorSource)

                _env.blockManager.initialize(conf.getAppId)

                _env

            } else {

                SparkEnv.get

            }

        }

     

        private val executorActor = env.actorSystem.actorOf(

            Props(new ExecutorActor(executorId)), "ExecutorActor")

     

        private val urlClassLoader = createClassLoader()

        private val replClassLoader = addReplClassLoaderIfNeeded(urlClassLoader)

        env.serializer.setDefaultClassLoader(urlClassLoader)

     

        private val akkaFrameSize = AkkaUtils.maxFrameSizeBytes(conf)

        private val maxResultSize = Utils.getMaxResultSize(conf)

     

        val threadPool = Utils.newDaemonCachedThreadPool("Executor task launch worker")

        private val runningTasks = new ConcurrentHashMap[Long, TaskRunner]

        startDriverHeartbeater()

    3.8.2 ExecutorSource的创建与注册

    ExecutorSource用于测量系统。通过metricRegistry的register方法注册计量,这些计量信息包括threadpool.activeTasks、threadpool.completeTasks、threadpool.currentPool_size、thread-pool.maxPool_size、filesystem.hdfs.write_bytes、filesystem.hdfs.read_ops、filesystem.file.write_bytes、filesystem.hdfs.largeRead_ops、filesystem.hdfs.write_ops等,ExecutorSource的实现见代码清单3-38。Metric接口的具体实现,参考附录D。

    代码清单3-38 ExecutorSource的实现

    private[spark] class ExecutorSource(val executor: Executor, executorId: String) extends Source {

        private def fileStats(scheme: String) : Option[FileSystem.Statistics] =

            FileSystem.getAllStatistics().filter(s => s.getScheme.equals(scheme)).headOption

     

        private def registerFileSystemStat[T](

                scheme: String, name: String, f: FileSystem.Statistics => T, defaultValue: T) = {

            metricRegistry.register(MetricRegistry.name("filesystem", scheme, name), new Gauge[T] {

                override def getValue: T = fileStats(scheme).map(f).getOrElse (defaultValue)

            })

        }

        override val metricRegistry = new MetricRegistry()

        override val sourceName = "executor"

     

    metricRegistry.register(MetricRegistry.name("threadpool", "activeTasks"), new Gauge[Int] {

            override def getValue: Int = executor.threadPool.getActiveCount()

        })

        metricRegistry.register(MetricRegistry.name("threadpool", "completeTasks"), new Gauge[Long] {

            override def getValue: Long = executor.threadPool.getCompletedTaskCount()

        })

        metricRegistry.register(MetricRegistry.name("threadpool", "currentPool_size"), new Gauge[Int] {

            override def getValue: Int = executor.threadPool.getPoolSize()

        })

        metricRegistry.register(MetricRegistry.name("threadpool", "maxPool_size"), new Gauge[Int] {

            override def getValue: Int = executor.threadPool.getMaximumPoolSize()

        })

     

        // Gauge for file system stats of this executor

        for (scheme <- Array("hdfs", "file")) {

            registerFileSystemStat(scheme, "read_bytes", _.getBytesRead(), 0L)

            registerFileSystemStat(scheme, "write_bytes", _.getBytesWritten(), 0L)

            registerFileSystemStat(scheme, "read_ops", _.getReadOps(), 0)

            registerFileSystemStat(scheme, "largeRead_ops", _.getLargeReadOps(), 0)

            registerFileSystemStat(scheme, "write_ops", _.getWriteOps(), 0)

        }

    }

    创建完ExecutorSource后,调用MetricsSystem的registerSource方法将ExecutorSource注册到MetricsSystem。registerSource方法使用MetricRegistry的register方法,将Source注册到MetricRegistry,见代码清单3-39。关于MetricRegistry,具体参阅附录D。

    代码清单3-39 MetricsSystem注册Source的实现

    def registerSource(source: Source) {

        sources += source

        try {

            val regName = buildRegistryName(source)

            registry.register(regName, source.metricRegistry)

        } catch {

            case e: IllegalArgumentException => logInfo("Metrics already registered", e)

        }

    }

    3.8.3 ExecutorActor的构建与注册

    ExecutorActor很简单,当接收到SparkUI发来的消息时,将所有线程的栈信息发送回去,代码实现如下。

    override def receiveWithLogging = {

        case TriggerThreadDump =>

            sender ! Utils.getThreadDump()

    }

    3.8.4 Spark自身ClassLoader的创建

    获取要创建的ClassLoader的父加载器currentLoader,然后根据currentJars生成URL数组,spark.files.userClassPathFirst属性指定加载类时是否先从用户的classpath下加载,最后创建ExecutorURLClassLoader或者ChildExecutorURLClassLoader,见代码清单3-40。

    代码清单3-40 Spark自身ClassLoader的创建

    private def createClassLoader(): MutableURLClassLoader = {

        val currentLoader = Utils.getContextOrSparkClassLoader

     

        val urls = currentJars.keySet.map { uri =>

            new File(uri.split("/").last).toURI.toURL

        }.toArray

        val userClassPathFirst = conf.getBoolean("spark.files.userClassPathFirst", false)

        userClassPathFirst match {

            case true => new ChildExecutorURLClassLoader(urls, currentLoader)

            case false => new ExecutorURLClassLoader(urls, currentLoader)

        }

    }

    Utils.getContextOrSparkClassLoader的实现见附录A。ExecutorURLClassLoader或者Child-ExecutorURLClassLoader实际上都继承了URLClassLoader,见代码清单3-41。

    代码清单3-41 ChildExecutorURLClassLoader和ExecutorLIRLClassLoader的实现

    private[spark] class ChildExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader)

        extends MutableURLClassLoader {

     

        private object userClassLoader extends URLClassLoader(urls, null){

            override def addURL(url: URL) {

                super.addURL(url)

            }

        override def findClass(name: String): Class[_] = {

            super.findClass(name)

        }

    }

     

    private val parentClassLoader = new ParentClassLoader(parent)

     

    override def findClass(name: String): Class[_] = {

        try {

            userClassLoader.findClass(name)

        } catch {

            case e: ClassNotFoundException => {

                parentClassLoader.loadClass(name)

            }

        }

    }

     

        def addURL(url: URL) {

            userClassLoader.addURL(url)

        }

     

        def getURLs() = {

            userClassLoader.getURLs()

        }

    }

     

    private[spark] class ExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader)

        extends URLClassLoader(urls, parent) with MutableURLClassLoader {

     

        override def addURL(url: URL) {

            super.addURL(url)

        }

    }

    如果需要REPL交互,还会调用addReplClassLoaderIfNeeded创建replClassLoader,见代码清单3-42。

    代码清单3-42 addReplClassLoaderIfNeeded的实现

    private def addReplClassLoaderIfNeeded(parent: ClassLoader): ClassLoader = {

        val classUri = conf.get("spark.repl.class.uri", null)

        if (classUri != null) {

            logInfo("Using REPL class URI: " + classUri)

            val userClassPathFirst: java.lang.Boolean =

            conf.getBoolean("spark.files.userClassPathFirst", false)

        try {

            val klass = Class.forName("org.apache.spark.repl.ExecutorClassLoader")

                .asInstanceOf[Class[_ <: ClassLoader]]

            val constructor = klass.getConstructor(classOf[SparkConf], classOf[String],

                classOf[ClassLoader], classOf[Boolean])

            constructor.newInstance(conf, classUri, parent, userClassPathFirst)

        } catch {

            case _: ClassNotFoundException =>

                logError("Could not find org.apache.spark.repl.ExecutorClassLoader on classpath!")

                System.exit(1)

                null

            }

        } else {

            parent

        }

    }

    3.8.5 启动Executor的心跳线程

    Executor的心跳由startDriverHeartbeater启动,见代码清单3-43。Executor心跳线程的间隔由属性spark.executor.heartbeatInterval配置,默认是10 000毫秒。此外,超时时间是30秒,超时重试次数是3次,重试间隔是3000毫秒,使用actorSystem.actorSelection (url)方法查找到匹配的Actor引用, url是akka.tcp://sparkDriver@ $driverHost:$driverPort/user/Heartbeat-Receiver,最终创建一个运行过程中,每次会休眠10 000~20 000毫秒的线程。此线程从runningTasks获取最新的有关Task的测量信息,将其与executorId、blockManagerId封装为Heartbeat消息,向HeartbeatReceiver发送Heartbeat消息。

    代码清单3-43 启动Executor的心跳线程

    def startDriverHeartbeater() {

        val interval = conf.getInt("spark.executor.heartbeatInterval", 10000)

        val timeout = AkkaUtils.lookupTimeout(conf)

        val retryAttempts = AkkaUtils.numRetries(conf)

        val retryIntervalMs = AkkaUtils.retryWaitMs(conf)

        val heartbeatReceiverRef = AkkaUtils.makeDriverRef("HeartbeatReceiver", conf,env.actorSystem)

        val t = new Thread() {

            override def run() {

                // Sleep a random interval so the heartbeats don't end up in sync

                Thread.sleep(interval + (math.random * interval).asInstanceOf[Int])

                while (!isStopped) {

                    val tasksMetrics = new ArrayBuffer[(Long, TaskMetrics)]()

                    val curGCTime = gcTime

                    for (taskRunner <- runningTasks.values()) {

                        if (!taskRunner.attemptedTask.isEmpty) {

                            Option(taskRunner.task).flatMap(_.metrics).foreach { metrics =>

                                metrics.updateShuffleReadMetrics

                                metrics.jvmGCTime = curGCTime - taskRunner.startGCTime

                                if (isLocal) {

                                    val copiedMetrics = Utils.deserialize[TaskMetrics](Utils.serialize(metrics))

                                    tasksMetrics += ((taskRunner.taskId, copiedMetrics))

                            } else {

                                // It will be copied by serialization

                                tasksMetrics += ((taskRunner.taskId, metrics))

                            }

                        }

                    }

                }

                val message = Heartbeat(executorId, tasksMetrics.toArray, env.blockManager.blockManagerId)

                try {

                    val response = AkkaUtils.askWithReply[HeartbeatResponse](message, heartbeatReceiverRef,

                        retryAttempts, retryIntervalMs, timeout)

                    if (response.reregisterBlockManager) {

                        logWarning("Told to re-register on heartbeat")

                        env.blockManager.reregister()

                    }

                } catch {

                    case NonFatal(t) => logWarning("Issue communicating with driver in heartbeater", t)

                }

    Thread.sleep(interval)

                }

            }

        }

        t.setDaemon(true)

        t.setName("Driver Heartbeater")

        t.start()

    }

    这个心跳线程的作用是什么呢?其作用有两个:

    更新正在处理的任务的测量信息;

    通知BlockManagerMaster,此Executor上的BlockManager依然活着。

    下面对心跳线程的实现详细分析下,读者可以自行选择是否需要阅读。

    初始化TaskSchedulerImpl后会创建心跳接收器HeartbeatReceiver。HeartbeatReceiver接收所有分配给当前Driver Application的Executor的心跳,并将Task、Task计量信息、心跳等交给TaskSchedulerImpl和DAGScheduler作进一步处理。创建心跳接收器的代码如下。

    private val heartbeatReceiver = env.actorSystem.actorOf(

        Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver")

    HeartbeatReceiver在收到心跳消息后,会调用TaskScheduler的executorHeartbeatReceived方法,代码如下。

    override def receiveWithLogging = {

        case Heartbeat(executorId, taskMetrics, blockManagerId) =>

            val response = HeartbeatResponse(

                !scheduler.executorHeartbeatReceived(executorId, taskMetrics, blockManagerId))

            sender ! response

      }

    executorHeartbeatReceived的实现代码如下。

    val metricsWithStageIds: Array[(Long, Int, Int, TaskMetrics)] = synchronized {

        taskMetrics.flatMap { case (id, metrics) =>

            taskIdToTaskSetId.get(id)

                .flatMap(activeTaskSets.get)

                .map(taskSetMgr => (id, taskSetMgr.stageId, taskSetMgr.taskSet.attempt, metrics))

        }

    }

    dagScheduler.executorHeartbeatReceived(execId, metricsWithStageIds, blockManagerId)

    这段程序通过遍历taskMetrics,依据taskIdToTaskSetId和activeTaskSets找到TaskSet-Manager。然后将taskId、TaskSetManager.stageId、TaskSetManager .taskSet.attempt、TaskMetrics封装到类型为Array[(Long, Int, Int, TaskMetrics)]的数组metricsWithStageIds中。最后调用了dag-Scheduler的executorHeartbeatReceived方法,其实现如下。

    listenerBus.post(SparkListenerExecutorMetricsUpdate(execId, taskMetrics))

    implicit val timeout = Timeout(600 seconds)

     

    Await.result(

        blockManagerMaster.driverActor ? BlockManagerHeartbeat(blockManagerId),

        timeout.duration).asInstanceOf[Boolean]

    dagScheduler将executorId、metricsWithStageIds封装为SparkListenerExecutorMetricsUpdate事件,并post到listenerBus中,此事件用于更新Stage的各种测量数据。最后给BlockManagerMaster持有的BlockManagerMasterActor发送BlockManagerHeartbeat消息。BlockManagerMasterActor在收到消息后会匹配执行heartbeatReceived方法(参见4.3.1节)。heartbeatReceived最终更新BlockManagerMaster对BlockManger的最后可见时间(即更新Block-ManagerId对应的BlockManagerInfo的_lastSeenMs,见代码清单3-44)。

    代码清单3-44 BlockManagerMasterActor的心跳处理

    private def heartbeatReceived(blockManagerId: BlockManagerId): Boolean = {

        if (!blockManagerInfo.contains(blockManagerId)) {

            blockManagerId.isDriver && !isLocal

        } else {

            blockManagerInfo(blockManagerId).updateLastSeenMs()

            true

        }

    }

    local模式下Executor的心跳通信过程,可以用图3-3来表示。

    在非local模式中,Executor发送心跳的过程是一样的,主要的区别是Executor进程与Driver不在同一个进程,甚至不在同一个节点上。

    接下来会初始化块管理器BlockManager,代码如下。

     

    图3-3 Executor的心跳通信过程

    env.blockManager.initialize(applicationId)

    具体的初始化过程,请参阅第4章。

    相关资源:七夕情人节表白HTML源码(两款)
    最新回复(0)