《数据驱动的网络分析》——6.5 可视化

    xiaoxiao2024-01-24  156

    本节书摘来自异步社区《数据驱动的网络分析》一书中的第6章,第6.5节,作者: 【美】Michael Collins 更多章节内容可以访问云栖社区“异步社区”公众号查看。

    6.5 可视化

    R提供了现成的、极其强大的可视化能力,许多标准可视化可以用高级命令完成。在下面的例子中,我们将用一个正态分布样本制作直方图,并将结果显示在屏幕上。

    第10章讨论各种可视化技术。在本节中,我们的重点是R可视化的各种功能,包括图像控制、保存和操纵。

    6.5.1 可视化命令R有许多高级可视化命令,可以绘制时间序列、直方图和柱状图。套件中的骨干命令是plot,它可以用于提供来源于散点图的多种图形:简单散点图、阶梯图和序列图。   表6-1列出了主要的图形名称,help命令对这些图形提供了说明。

    6.5.2 可视化参数控制可视化参数有两种主要机制。首先,几乎所有可视化命令都提供一组标准的选项参数。表6-2列出了主要的选项,可视化结果对比如图6-2所示。

    https://yqfile.alicdn.com/ba60dcb3eb5632daf41558c1c0fb643928bfb448.png" >

    可视化选项也可以使用par函数控制,该函数提供了大量特殊选项,可以管理轴尺寸、点类型、字体选择等。par采用很多选项,你可以通过help(par)了解。表6-3提供了一些较为重要的选项。

    > #我们将使用par绘制一个3列2行的矩阵,然后用其他par值,为矩阵的3个单元填入不同的图形 > par(mfcol=c(2,3)) > #绘制默认的直方图 > hist(sample_rnorm,main='Sample Histogram') > #现在我们转移到第2行中间的一列 > par(mfg=c(2,2,2,3)) > #将轴的尺寸改为默认值的一半 > par(cex.axis=0.5) > #将轴改为蓝色 > par(col.axis='blue') > #将图形变成红色 > par(col = 'red') > #现在绘制散点图 > plot(sample_rnorm,main='Sample scatter') > #在我们绘制完该图之后,它将自动移到第3行第1列,恢复轴尺寸 > par(cex.axis=1.0) > #将点类型更改为散点图。使用help(points)获取PCH数量的列表 > par(pch=24) > plot(sample_rnorm,main='Sample Scatter with New Points')

    线类型

    pch

    数字

    点类型

    a cex和col有一些子参数:.axis、.main、.lab和.sub,它们影响对应的元素。例如,cex.main是标题的相对字体大小

    b 颜色字符串可以是red这样的字符串,也可以是十六进制RGB字符串,形式为#RRGGBB

    6.5.3 可视化注解在绘制可视化时,我通常喜欢使用某种模型或者注解和可视化形式对比。例如,如果我要比较可视化形式和一个正态分布,应该将对应的正态分布画在屏幕上,将其与直方图的结果比较。

    R 提供了在图形上绘制文本的一些支持函数。这些函数包括 lines、points、abline、polygon和text。和高级绘图函数不同,这些函数直接写入屏幕,而不重置图像。在本节中,我们将说明如何使用lines和text注解图像。

    我们将首先生成一个常用场景下的直方图:在一个/22(1024台主机)网络上的扫描流量加上典型用户流量。观测参数是主机数量,我们假定在正常的情况下,该值呈正态分布,平均值为280台主机,标准差为30。在每次扫描中,会发生10种事件中的一种。在扫描期间,测得的主机数量总为1024,因为扫描器会扫描网络上的每一台主机。

    > #首先,我们通过rnorm,用高斯分布建立典型活动的模型 > normal_activity <- rnorm(300,280,30) > #然后,我们创建一个攻击数量的矢量,每个攻击都是针对1024台主机 > attack_activity <- rep(1024,30) > #将两者连接起来,因为我们关注的是主机数量而不是时间相关性,所以不关心顺序 > activity_vector<-c(normal_activity, attack_activity) > hist(activity_vector,breaks=50,xlab='Hosts observed',\  ylab='Probability of Occurence',prob=T,main='Simulated Scan Activity')

    注意直方图中的breaks和prob参数,breaks控制直方图中统计堆(Bin)的数量,这在你处理长尾分布(如例中的模型)时特别重要。prob根据密度而不是频率来绘制柱状图。

    现在,我们将配上一条曲线。为此,我们为lines函数创建一个x值矢量和一个y值矢量。x值平均分布到观测分布覆盖的范围中,而y值用dnom函数得出:

    > xpoints<-seq(min(activity_vector),max(activity_vector),length=50) > #给定x值(xpoints)和使用来自activity矢量的均值和标准差的正太分布模型, > #用dnorm计算对应的y值。该值的匹配情况很差,因为攻击使流量出现偏差。 > ypoints<-dnorm(xpoints,mean=mean(activity_vector),sd=sd(activity_vector)) > #绘制直方图,这将清除画布 > hist(activity_vector,breaks=50,xlab='Hosts observed',\  ylab='Density',prob=T,main='Simulated Scan Activity') > #用lines绘制匹配曲线 > lines(xpoints,ypoints,lwd=2) > #绘制文本。x和y值从图中得出。 > text(550,0.010,"This is an example of a fit")

    6.5.4 导出可视化R可视化在设备(Device)上输出,可以使用不同函数调用。默认设备在Unix系统上为X11,在Mac OS X上为quartz,在Windows上为win.graph。R的Devices(注意大小写)帮助提供了当前平台可用设备的列表。

    要打印R输出,打开一个输出设备(如png、jpeg或pdf),然后正常编写命令。结果将写入设备文件,直到你用dev.off()解除设备。此时,你应该再次调用默认设备(不需要参数)。

    > #将直方图输出到文件'histogram.png' > png(file='histogram.png') > hist(rnorm(200,50,20)) > dev.off() > quartz() 相关资源:敏捷开发V1.0.pptx
    最新回复(0)