update1:第二个实现,读操作不必要采用独占锁,缓存显然是读多于写,读的时候一开始用独占锁是考虑到要递增计数和更新时间戳要加锁,不过这两个变量都是采用原子变量,因此也不必采用独占锁,修改为读写锁。
update2:一个错误,老是写错关键字啊,
LRUCache的
maxCapacity应该声明为volatile,而不是transient。
最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示:
import
java.util.ArrayList;
import
java.util.Collection;
import
java.util.LinkedHashMap;
import
java.util.concurrent.locks.Lock;
import
java.util.concurrent.locks.ReentrantLock;
import
java.util.Map;
/**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档 * *
@author
dennis * *
@param
<K> *
@param
<V>
*/
public
class
LRULinkedHashMap
<
K, V
>
extends
LinkedHashMap
<
K, V
>
{
private
final
int
maxCapacity;
private
static
final
float
DEFAULT_LOAD_FACTOR
=
0.75f
;
private
final
Lock lock
=
new
ReentrantLock();
public
LRULinkedHashMap(
int
maxCapacity) {
super
(maxCapacity, DEFAULT_LOAD_FACTOR,
true
);
this
.maxCapacity
=
maxCapacity; } @Override
protected
boolean
removeEldestEntry(java.util.Map.Entry
<
K, V
>
eldest) {
return
size()
>
maxCapacity; } @Override
public
boolean
containsKey(Object key) {
try
{ lock.lock();
return
super
.containsKey(key); }
finally
{ lock.unlock(); } } @Override
public
V get(Object key) {
try
{ lock.lock();
return
super
.get(key); }
finally
{ lock.unlock(); } } @Override
public
V put(K key, V value) {
try
{ lock.lock();
return
super
.put(key, value); }
finally
{ lock.unlock(); } }
public
int
size() {
try
{ lock.lock();
return
super
.size(); }
finally
{ lock.unlock(); } }
public
void
clear() {
try
{ lock.lock();
super
.clear(); }
finally
{ lock.unlock(); } }
public
Collection
<
Map.Entry
<
K, V
>>
getAll() {
try
{ lock.lock();
return
new
ArrayList
<
Map.Entry
<
K, V
>>
(
super
.entrySet()); }
finally
{ lock.unlock(); } } }
如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
LRU算法还可以通过计数来实现,缓存存储的位置附带一个计数器,当命中时将计数器加1,替换时就查找计数最小的位置并替换,结合访问时间戳来实现。这种算法比较适合缓存数据量较小的场景,显然,遍历查找计数最小位置的时间复杂度为O(n)。我实现了一个,结合了访问时间戳,当最小计数大于MINI_ACESS时(这个参数的调整对命中率有较大影响),就移除最久没有被访问的项:
package
net.rubyeye.codelib.util.concurrency.cache;
import
java.io.Serializable;
import
java.util.ArrayList;
import
java.util.Collection;
import
java.util.HashMap;
import
java.util.Iterator;
import
java.util.Map;
import
java.util.Set;
import
java.util.concurrent.atomic.AtomicInteger;
import
java.util.concurrent.atomic.AtomicLong;
import
java.util.concurrent.locks.Lock;
import
java.util.concurrent.locks.ReadWriteLock;
import
java.util.concurrent.locks.ReentrantLock;
import
java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* *
@author
dennis 类说明:当缓存数目不多时,才用缓存计数的传统LRU算法 *
@param
<K> *
@param
<V>
*/
public
class
LRUCache
<
K, V
>
implements
Serializable {
private
static
final
int
DEFAULT_CAPACITY
=
100
;
protected
Map
<
K, ValueEntry
>
map;
private
final
ReadWriteLock lock
=
new
ReentrantReadWriteLock();
private
final
Lock readLock
=
lock.readLock();
private
final
Lock writeLock
=
lock.writeLock();
private
final
volatile
int
maxCapacity; //保持可见性
public
static
int
MINI_ACCESS
=
5
;
public
LRUCache() {
this
(DEFAULT_CAPACITY); }
public
LRUCache(
int
capacity) {
if
(capacity
<=
0
)
throw
new
RuntimeException(
"
缓存容量不得小于0
"
);
this
.maxCapacity
=
capacity;
this
.map
=
new
HashMap
<
K, ValueEntry
>
(maxCapacity); }
public
boolean
ContainsKey(K key) {
try
{ readLock.lock();
return
this
.map.containsKey(key); }
finally
{ readLock.unlock(); } }
public
V put(K key, V value) {
try
{ writeLock.lock();
if
((map.size()
>
maxCapacity
-
1
)
&&
!
map.containsKey(key)) {
//
System.out.println("开始");
Set
<
Map.Entry
<
K, ValueEntry
>>
entries
=
this
.map.entrySet(); removeRencentlyLeastAccess(entries); } ValueEntry new_value
=
new
ValueEntry(value); ValueEntry old_value
=
map.put(key, new_value);
if
(old_value
!=
null
) { new_value.count
=
old_value.count;
return
old_value.value; }
else
return
null
; }
finally
{ writeLock.unlock(); } }
/**
* 移除最近最少访问
*/
protected
void
removeRencentlyLeastAccess( Set
<
Map.Entry
<
K, ValueEntry
>>
entries) {
//
最小使用次数
long
least
=
0
;
//
访问时间最早
long
earliest
=
0
; K toBeRemovedByCount
=
null
; K toBeRemovedByTime
=
null
; Iterator
<
Map.Entry
<
K, ValueEntry
>>
it
=
entries.iterator();
if
(it.hasNext()) { Map.Entry
<
K, ValueEntry
>
valueEntry
=
it.next(); least
=
valueEntry.getValue().count.get(); toBeRemovedByCount
=
valueEntry.getKey(); earliest
=
valueEntry.getValue().lastAccess.get(); toBeRemovedByTime
=
valueEntry.getKey(); }
while
(it.hasNext()) { Map.Entry
<
K, ValueEntry
>
valueEntry
=
it.next();
if
(valueEntry.getValue().count.get()
<
least) { least
=
valueEntry.getValue().count.get(); toBeRemovedByCount
=
valueEntry.getKey(); }
if
(valueEntry.getValue().lastAccess.get()
<
earliest) { earliest
=
valueEntry.getValue().count.get(); toBeRemovedByTime
=
valueEntry.getKey(); } }
//
System.out.println("remove:" + toBeRemoved);
//
如果最少使用次数大于MINI_ACCESS,那么移除访问时间最早的项(也就是最久没有被访问的项)
if
(least
>
MINI_ACCESS) { map.remove(toBeRemovedByTime); }
else
{ map.remove(toBeRemovedByCount); } }
public
V get(K key) {
try
{ readLock.lock(); V value
=
null
; ValueEntry valueEntry
=
map.get(key);
if
(valueEntry
!=
null
) {
//
更新访问时间戳
valueEntry.updateLastAccess();
//
更新访问次数
valueEntry.count.incrementAndGet(); value
=
valueEntry.value; }
return
value; }
finally
{ readLock.unlock(); } }
public
void
clear() {
try
{ writeLock.lock(); map.clear(); }
finally
{ writeLock.unlock(); } }
public
int
size() {
try
{ readLock.lock();
return
map.size(); }
finally
{ readLock.unlock(); } }
public
long
getCount(K key) {
try
{ readLock.lock(); ValueEntry valueEntry
=
map.get(key);
if
(valueEntry
!=
null
) {
return
valueEntry.count.get(); }
return
0
; }
finally
{ readLock.unlock(); } }
public
Collection
<
Map.Entry
<
K, V
>>
getAll() {
try
{ readLock.lock(); Set
<
K
>
keys
=
map.keySet(); Map
<
K, V
>
tmp
=
new
HashMap
<
K, V
>
();
for
(K key : keys) { tmp.put(key, map.get(key).value); }
return
new
ArrayList
<
Map.Entry
<
K, V
>>
(tmp.entrySet()); }
finally
{ readLock.unlock(); } }
class
ValueEntry
implements
Serializable {
private
V value;
private
AtomicLong count;
private
AtomicLong lastAccess;
public
ValueEntry(V value) {
this
.value
=
value;
this
.count
=
new
AtomicLong(
0
); lastAccess
=
new
AtomicLong(System.nanoTime()); }
public
void
updateLastAccess() {
this
.lastAccess.set(System.nanoTime()); } } }
文章转自庄周梦蝶 ,原文发布时间2007-09-29