在worker中通过executor/mk-executor worker e, 创建每个executor
(defn mk-executor [worker executor-id] (let [executor-data (mk-executor-data worker executor-id) ;;1.mk-executor-data _ (log-message "Loading executor " (:component-id executor-data) ":" (pr-str executor-id)) task-datas (->> executor-data :task-ids (map (fn [t] [t (task/mk-task executor-data t)])) ;;2.mk-task (into {}) (HashMap.)) _ (log-message "Loaded executor tasks " (:component-id executor-data) ":" (pr-str executor-id)) report-error-and-die (:report-error-and-die executor-data) component-id (:component-id executor-data) ;;3.创建threads ;; starting the batch-transfer->worker ensures that anything publishing to that queue ;; doesn't block (because it's a single threaded queue and the caching/consumer started ;; trick isn't thread-safe) system-threads [(start-batch-transfer->worker-handler! worker executor-data)] handlers (with-error-reaction report-error-and-die (mk-threads executor-data task-datas)) threads (concat handlers system-threads)] ;;使用schedule-recurring定期产生SYSTEM_TICK(触发spout pending rotate) (setup-ticks! worker executor-data)executor会把需要发送的tuple缓存到batch-transfer->worker queue中 参考下面的comments, 为了避免component block (大量的tuple没有被及时处理), 额外创建了overflow buffer, 只有当这个buffer也满了, 才停止nextTuple(对于spout executor比较需要overflow buffer)
;; the overflow buffer is used to ensure that spouts never block when emitting ;; this ensures that the spout can always clear the incoming buffer (acks and fails), which ;; prevents deadlock from occuring across the topology (e.g. Spout -> Bolt -> Acker -> Spout, and all ;; buffers filled up) ;; when the overflow buffer is full, spouts stop calling nextTuple until it's able to clear the overflow buffer ;; this limits the size of the overflow buffer to however many tuples a spout emits in one call of nextTuple, ;; preventing memory issues overflow-buffer (LinkedList.)]返回fn, fn用于将[task, tuple]放到overflow-buffer或者batch-transfer->worker queue中
注意, 这是executor->transfer-fn, 不同于worker->transfer-fn, 名字起的不好, 会混淆 executor的transfer-fn将tuple缓存到executor的batch-transfer->worker, 而worker->transfer-fn将tuple发送到worker的transfer queue
;; in its own function so that it can be mocked out by tracked topologies (defn mk-executor-transfer-fn [batch-transfer->worker] (fn this ([task tuple block? ^List overflow-buffer] (if (and overflow-buffer (not (.isEmpty overflow-buffer))) ;;overflow存在并且不为空,说明queue已经满了,所以直接放overflow-buffer中 (.add overflow-buffer [task tuple]) (try-cause (disruptor/publish batch-transfer->worker [task tuple] block?) (catch InsufficientCapacityException e (if overflow-buffer (.add overflow-buffer [task tuple]) (throw e)) )))) ([task tuple overflow-buffer] (this task tuple (nil? overflow-buffer) overflow-buffer)) ([task tuple] (this task tuple nil) )))Storm-源码分析-Stats (backtype.storm.stats)
根据conf里面的sampling-rate创建一个sampler
(defn mk-stats-sampler [conf] (even-sampler (sampling-rate conf)))这里创建的是even-sampler,
(defn even-sampler [freq] (let [freq (int freq) start (int 0) r (java.util.Random.) curr (MutableInt. -1) target (MutableInt. (.nextInt r freq))] ;;[0,freq]中的随机值 (with-meta (fn [] (let [i (.increment curr)] (when (>= i freq) (.set curr start) (.set target (.nextInt r freq)))) (= (.get curr) (.get target))) ;;FP没有直接赋值, 所以==简化为= {:rate freq}))) (defn sampler-rate [sampler] (:rate (meta sampler)))even-sampler, 返回的是个fn ,并且通过with-meta添加metadata({:rate freq}) 所以, 通过(:rate (meta sampler)), 可以从sampler的meta里面取出rate值
sampler就是fn, 每次调用都会返回(= curr target) curr从start开始递增, 在达到target之前, 调用fn都是返回false 当curr等于target时, 调用fn返回true 当curr大于target时, 从新随机生成target, 将curr清零
所以sampler实际产生的效果, 就是不停的调用sampler, 会随机出现若干次false和一次true (在freq的范围内) 从而达到sampler的效果, 只有是true的时候才取样
其实对于简单的sampler, 比如rate是20%, 可以简单的每跳过4个取一个, 但是这样可能的问题是, 取样的规律性太强, 如果数据恰好符合你的规律, 比如5倍数的数据相同, 就会有问题 所以这里为了增加随机性, 采用这样的实现 并且这里对闭包和metadata的应用, 值得借鉴
(task/mk-task executor-data t)
Storm-源码分析-Topology Submit-Task
从batch-transfer-queue取出messages, 没有到达batchend时, 放到cached-emit中的arraylist中 当达到batchend时, 使用transfer-fn将messages发送到transfer-queue (spout应该没有发送给自己的tuple吧)
(defn start-batch-transfer->worker-handler! [worker executor-data] (let [worker-transfer-fn (:transfer-fn worker) cached-emit (MutableObject. (ArrayList.)) ;;用于cache所有messages,直到batchend storm-conf (:storm-conf executor-data) serializer (KryoTupleSerializer. storm-conf (:worker-context executor-data)) ] (disruptor/consume-loop* (:batch-transfer-queue executor-data) (disruptor/handler [o seq-id batch-end?] (let [^ArrayList alist (.getObject cached-emit)] (.add alist o) (when batch-end? (worker-transfer-fn serializer alist) (.setObject cached-emit (ArrayList.)) ))) :kill-fn (:report-error-and-die executor-data))))
Worker, transfer-fn
将task分为local和remote 对于local的, 使用local-transfer将messages发送到对应的recieve-queue里面 而对于remote的, 使用disruptor/publish发送到transfer-queue里面
storm使用kryo作为其java的序列化F/W (http://code.google.com/p/kryo/)
(defn mk-transfer-fn [worker] (let [local-tasks (-> worker :task-ids set) local-transfer (:transfer-local-fn worker) ^DisruptorQueue transfer-queue (:transfer-queue worker)] (fn [^KryoTupleSerializer serializer tuple-batch] (let [local (ArrayList.) remote (ArrayList.)] (fast-list-iter [[task tuple :as pair] tuple-batch] (if (local-tasks task) (.add local pair) (.add remote pair) )) (local-transfer local) ;; not using map because the lazy seq shows up in perf profiles (let [serialized-pairs (fast-list-for [[task ^TupleImpl tuple] remote] [task (.serialize serializer tuple)])] (disruptor/publish transfer-queue serialized-pairs)
try…catch mk-threads函数, 如果发生异常将error写到zk, 以便其他的daemon能及时知道
handlers (with-error-reaction report-error-and-die (mk-threads executor-data task-datas))
本文章摘自博客园,原文发布日期:2013-08-05
相关资源:敏捷开发V1.0.pptx