《Python Cookbook(第3版)中文版》——6.13 数据汇总和统计

    xiaoxiao2024-06-23  109

    本节书摘来自异步社区《Python Cookbook(第3版)中文版》一书中的第6章,第6.13节,作者[美]David Beazley , Brian K.Jones,陈舸 译,更多章节内容可以访问云栖社区“异步社区”公众号查看。

    6.13 数据汇总和统计

    6.13.1 问题

    我们需要在大型数据库中查询数据并由此生成汇总或者其他形式的统计数据。

    6.13.2 解决方案

    对于任何涉及统计、时间序列以及其他相关技术的数据分析问题,都应该使用Pandas库(http://pandas.pydata.org)。

    为了小试牛刀,下面这个例子使用Pandas来分析芝加哥的老鼠和啮齿动物数据库(https:// data.cityofchicago.org/Service-Requests/311-Service-Requests-Rodent-Baiting/97t6-zrhs)。在写作本书时,这个CSV文件中有大约74 000条数据:

    >>> import pandas >>> # Read a CSV file, skipping last line >>> rats = pandas.read_csv('rats.csv', skip_footer=1) >>> rats <class 'pandas.core.frame.DataFrame'> Int64Index: 74055 entries, 0 to 74054 Data columns: Creation Date 74055 non-null values Status 74055 non-null values Completion Date 72154 non-null values Service Request Number 74055 non-null values Type of Service Request 74055 non-null values Number of Premises Baited 65804 non-null values Number of Premises with Garbage 65600 non-null values Number of Premises with Rats 65752 non-null values Current Activity 66041 non-null values Most Recent Action 66023 non-null values Street Address 74055 non-null values ZIP Code 73584 non-null values X Coordinate 74043 non-null values Y Coordinate 74043 non-null values Ward 74044 non-null values Police District 74044 non-null values Community Area 74044 non-null values Latitude 74043 non-null values Longitude 74043 non-null values Location 74043 non-null values dtypes: float64(11), object(9) >>> # Investigate range of values for a certain field >>> rats['Current Activity'].unique() array([nan, Dispatch Crew, Request Sanitation Inspector], dtype=object) >>> # Filter the data >>> crew_dispatched = rats[rats['Current Activity'] == 'Dispatch Crew'] >>> len(crew_dispatched) 65676 >>> >>> # Find 10 most rat-infested ZIP codes in Chicago >>> crew_dispatched['ZIP Code'].value_counts()[:10] 60647 3837 60618 3530 60614 3284 60629 3251 60636 2801 60657 2465 60641 2238 60609 2206 60651 2152 60632 2071 >>> >>> # Group by completion date >>> dates = crew_dispatched.groupby('Completion Date') <pandas.core.groupby.DataFrameGroupBy object at 0x10d0a2a10> >>> len(dates) 472 >>> >>> # Determine counts on each day >>> date_counts = dates.size() >>> date_counts[0:10] Completion Date 01/03/2011 4 01/03/2012 125 01/04/2011 54 01/04/2012 38 01/05/2011 78 01/05/2012 100 01/06/2011 100 01/06/2012 58 01/07/2011 1 01/09/2012 12 >>> >>> # Sort the counts >>> date_counts.sort() >>> date_counts[-10:] Completion Date 10/12/2012 313 10/21/2011 314 09/20/2011 316 10/26/2011 319 02/22/2011 325 10/26/2012 333 03/17/2011 336 10/13/2011 378 10/14/2011 391 10/07/2011 457 >>>

    你没看错,2011年10月7号对于老鼠来说的确是非常忙碌的一天。

    6.13.3 讨论

    Pandas是一个庞大的库,它还有更多的功能,但我们无法在此一一描述。但是,如果需要分析大型的数据集、将数据归组、执行统计分析或者其他类似的任务,那么Pandas绝对值得一试。

    相关资源:Python Cookbook(第3版)中文版.pdf
    最新回复(0)