There are N students in a class. Some of them are friends, while some are not. Their friendship is transitive in nature. For example, if A is a direct friend of B, and B is a direct friend of C, then A is an indirect friend of C. And we defined a friend circle is a group of students who are direct or indirect friends.
Given a N*N matrix M representing the friend relationship between students in the class. If M[i][j] = 1, then the ithand jth students are direct friends with each other, otherwise not. And you have to output the total number of friend circles among all the students.
Example 1:
Input: [[1,1,0], [1,1,0], [0,0,1]] Output: 2 Explanation:The 0th and 1st students are direct friends, so they are in a friend circle. The 2nd student himself is in a friend circle. So return 2.
Example 2:
Input: [[1,1,0], [1,1,1], [0,1,1]] Output: 1 Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends, so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.
import java.util.TreeSet;
class Solution {
private interface UF { int getSize(); boolean isConnected(int p, int q); void unionElements(int p, int q); }
// 我们的第六版Union-Find private class UnionFind6 implements UF {
// rank[i]表示以i为根的集合所表示的树的层数 // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值 // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准 private int[] rank; private int[] parent; // parent[i]表示第i个元素所指向的父节点
// 构造函数 public UnionFind6(int size){
rank = new int[size]; parent = new int[size];
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ){ parent[i] = i; rank[i] = 1; } }
@Override public int getSize(){ return parent.length; }
// 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound.");
// path compression 2, 递归算法 if(p != parent[p]) parent[p] = find(parent[p]); return parent[p]; }
// 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); }
// 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){
int pRoot = find(p); int qRoot = find(q);
if( pRoot == qRoot ) return;
// 根据两个元素所在树的rank不同判断合并方向 // 将rank低的集合合并到rank高的集合上 if( rank[pRoot] < rank[qRoot] ) parent[pRoot] = qRoot; else if( rank[qRoot] < rank[pRoot]) parent[qRoot] = pRoot; else{ // rank[pRoot] == rank[qRoot] parent[pRoot] = qRoot; rank[qRoot] += 1; // 此时, 我维护rank的值 } } }
public int findCircleNum(int[][] M) {
int n = M.length; UnionFind6 uf = new UnionFind6(n); for(int i = 0 ; i < n ; i ++) for(int j = 0 ; j < i ; j ++) if(M[i][j] == 1) uf.unionElements(i, j);
TreeSet<Integer> set = new TreeSet<>(); for(int i = 0 ; i < n ; i ++) set.add(uf.find(i)); return set.size(); } }