运行:
np.loadtxt: [('1', '20130902', '600028', 4.41, 4.43, 4.37, 17275, 4.41, 392662) ('2', '20130903', '600028', 4.41, 4.46, 4.4 , 19241, 4.45, 434177) ('3', '20130904', '600028', 4.44, 4.49, 4.42, 20106, 4.47, 451470) ... ('1356', '20190327', '600028', 5.71, 5.75, 5.69, 63601, 5.72, 1112544) ('1357', '20190328', '600028', 5.69, 5.7 , 5.62, 65692, 5.64, 1162484) ('1358', '20190329', '600028', 5.65, 5.75, 5.61, 112785, 5.74, 1981482)]
pd.read_table: id time code open_p colse_p low_p vol high_p col 0 1 20130902 600028 4.41 4.43 4.37 17275.39 4.41 392662 1 2 20130903 600028 4.41 4.46 4.40 19241.84 4.45 434177 2 3 20130904 600028 4.44 4.49 4.42 20106.30 4.47 451470 3 4 20130905 600028 4.47 4.48 4.42 15582.48 4.47 349997 4 5 20130906 600028 4.46 4.52 4.45 19101.41 4.50 425777
np.mean(jd_stock['open_p']): 5.658718703976436
np.average(jd_stock['open_p']): 5.658718703976436
np.average加权平均 np.average(jd_stock['open_p'], weights=jd_stock['vol']): 6.362912722690805