Python实现Apriori算法

    xiaoxiao2025-03-24  33

    # -*- coding:utf-8 -*- __author__ = 'yangxin_ryan' from numpy import * from votesmart import votesmart class Apriori(object): def load_data_set(self): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def create_c1(self, data_set): # 创建集合C1,即对data_set去重、排序、放入list中 # 然后转换所有的元素为 frozenset c1 = [] for transaction in data_set: for item in transaction: if not [item] in c1: c1.append([item]) c1.sort() return map(frozenset, c1) def scan_d(self, d, ck, min_support): # 计算候选数据集 CK 在数据集 D 中的支持度,并返回支持度大于最小支持度(minSupport)的数据 ss_cnt = {} for tid in d: for can in ck: if can.issubset(tid): if not ss_cnt.has_key(can): ss_cnt[can] = 1 else: ss_cnt[can] &#
    最新回复(0)