scikit-learn 决策树代码学习-红酒数据

    xiaoxiao2025-03-24  37

    代码笔记

    1.导库

    from sklearn import tree from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split

    2. 加载数据,拆分

    wine = load_wine() Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data, wine.target, test_size=0.3)

    3. 建模,训练

    clf = tree.DecisionTreeClassifier(criterion = 'entropy') clf = clf.fit(Xtrain, Ytrain) score = clf.score(Xtest, Ytest) print(score)

    4. 查看特征的重要性

    feature_name = ['酒精','苹果酸','灰','灰的碱性','美','酒精1','苹果酸1','灰1','灰的碱性1','美1','111','222','333'] clf.feature_importances_ #特征的重要性 print(list(zip(feature_name, clf.feature_importances_))) ############################################################### print([*zip(feature_name, clf.feature_importances_)])

     

    最新回复(0)