自然语言处理之TextRNN

    xiaoxiao2025-05-16  15

    TextRNN文本分类

    RNN是在自然语言处理领域非常标配的一个网络,在序列标注/命名体识别/seq2seq模型等很多场景都有应用,Recurrent Neural Network for Text Classification with Multi-Task Learning文中介绍了RNN用于分类问题的设计,下图LSTM用于网络结构原理示意图,最后一步的隐层代表着对整个句子的编码,直接接全连接层softmax输出。 数据预处理 使用torchtext库来进行文本处理,包括以下几个部分:分词:torchtext使用jieba分词器作为tokenizer去停用词:加载去停用词表,并在data.Field中设置 text = data.Field(sequential=True, lower=True, tokenize=tokenizer, stop_words=stop_words)文本长度padding:如果需要设置文本的长度,则在data.Field中设置fix_length,否则torchtext自动将文本长度处理为最大样本长度词向量转换:torchtext能自动建立word2id和id2word两个索引,并将index转换为对应词向量,如果要加载预训练词向量,在build_vocab中设置即可。 import jieba from torchtext import data import re from torchtext.vocab import Vectors def tokenizer(text): # create a tokenizer function regex = re.compile(r'[^\u4e00-\u9fa5aA-Za-z0-9]') text = regex.sub(' ', text) return [word for word in jieba.cut(text) if word.strip()] # 去停用词 def get_stop_words(): file_object = open('data/stopwords.txt') stop_words = [] for line in file_object.readlines(): line = line[:-1] line = line.strip() stop_words.append(line) return stop_words def load_data(args): print('加载数据中...') stop_words = get_stop_words() # 加载停用词表 ''' 如果需要设置文本的长度,则设置fix_length,否则torchtext自动将文本长度处理为最大样本长度 text = data.Field(sequential=True, tokenize=tokenizer, fix_length=args.max_len, stop_words=stop_words) ''' text = data.Field(sequential=True, lower=True, tokenize=tokenizer, stop_words=stop_words) label = data.Field(sequential=False) text.tokenize = tokenizer train, val = data.TabularDataset.splits( path='data/', skip_header=True, train='train.tsv', validation='validation.tsv', format='tsv', fields=[('index', None), ('label', label), ('text', text)], ) if args.static: text.build_vocab(train, val, vectors=Vectors(name="data/eco_article.vector")) # 此处改为你自己的词向量 args.embedding_dim = text.vocab.vectors.size()[-1] args.vectors = text.vocab.vectors else: text.build_vocab(train, val) label.build_vocab(train, val) train_iter, val_iter = data.Iterator.splits( (train, val), sort_key=lambda x: len(x.text), batch_sizes=(args.batch_size, len(val)), # 训练集设置batch_size,验证集整个集合用于测试 device=-1 ) args.vocab_size = len(text.vocab) args.label_num = len(label.vocab) return train_iter, val_iter

    训练

    如果要使用预训练词向量,则data文件夹下要存放你自己的词向量随机初始化Embedding进行训练 python train.py 随机初始化Embedding并设置是否为双向LSTM以及stack的层数 python train.py -bidirectional=True -layer-num=2 使用预训练词向量进行训练(词向量静态,不可调) python train.py -static=true 微调预训练词向量进行训练(词向量动态,可调) python train.py -static=true -fine-tune=true

    模型代码:

    import torch import torch.nn as nn # 循环神经网络 (many-to-one) class TextRNN(nn.Module): def __init__(self, args): super(TextRNN, self).__init__() embedding_dim = args.embedding_dim label_num = args.label_num vocab_size = args.vocab_size self.hidden_size = args.hidden_size self.layer_num = args.layer_num self.bidirectional = args.bidirectional self.embedding = nn.Embedding(vocab_size, embedding_dim) if args.static: # 如果使用预训练词向量,则提前加载,当不需要微调时设置freeze为True self.embedding = self.embedding.from_pretrained(args.vectors, freeze=not args.fine_tune) self.lstm = nn.LSTM(embedding_dim, # x的特征维度,即embedding_dim self.hidden_size,# 隐藏层单元数 self.layer_num,# 层数 batch_first=True,# 第一个维度设为 batch, 即:(batch_size, seq_length, embedding_dim) bidirectional=self.bidirectional) # 是否用双向 self.fc = nn.Linear(self.hidden_size * 2, label_num) if self.bidirectional else nn.Linear(self.hidden_size, label_num) def forward(self, x): # 输入x的维度为(batch_size, max_len), max_len可以通过torchtext设置或自动获取为训练样本的最大长度 x = self.embedding(x) # 经过embedding,x的维度为(batch_size, time_step, input_size=embedding_dim) # 隐层初始化 # h0维度为(num_layers*direction_num, batch_size, hidden_size) # c0维度为(num_layers*direction_num, batch_size, hidden_size) h0 = torch.zeros(self.layer_num * 2, x.size(0), self.hidden_size) if self.bidirectional else torch.zeros(self.layer_num, x.size(0), self.hidden_size) c0 = torch.zeros(self.layer_num * 2, x.size(0), self.hidden_size) if self.bidirectional else torch.zeros(self.layer_num, x.size(0), self.hidden_size) # LSTM前向传播,此时out维度为(batch_size, seq_length, hidden_size*direction_num) # hn,cn表示最后一个状态?维度与h0和c0一样 out, (hn, cn) = self.lstm(x, (h0, c0)) # 我们只需要最后一步的输出,即(batch_size, -1, output_size) out = self.fc(out[:, -1, :]) return out

    训练代码:

    import argparse import os import sys import torch import torch.nn.functional as F import data_processor from model import TextRNN parser = argparse.ArgumentParser(description='TextRNN text classifier') parser.add_argument('-lr', type=float, default=0.01, help='学习率') parser.add_argument('-batch-size', type=int, default=128) parser.add_argument('-epoch', type=int, default=20) parser.add_argument('-embedding-dim', type=int, default=128, help='词向量的维度') parser.add_argument('-hidden_size', type=int, default=64, help='lstm中神经单元数') parser.add_argument('-layer-num', type=int, default=1, help='lstm stack的层数') parser.add_argument('-label-num', type=int, default=2, help='标签个数') parser.add_argument('-bidirectional', type=bool, default=False, help='是否使用双向lstm') parser.add_argument('-static', type=bool, default=False, help='是否使用预训练词向量') parser.add_argument('-fine-tune', type=bool, default=True, help='预训练词向量是否要微调') parser.add_argument('-cuda', type=bool, default=False) parser.add_argument('-log-interval', type=int, default=1, help='经过多少iteration记录一次训练状态') parser.add_argument('-test-interval', type=int, default=100, help='经过多少iteration对验证集进行测试') parser.add_argument('-early-stopping', type=int, default=1000, help='早停时迭代的次数') parser.add_argument('-save-best', type=bool, default=True, help='当得到更好的准确度是否要保存') parser.add_argument('-save-dir', type=str, default='model_dir', help='存储训练模型位置') args = parser.parse_args() def train(args): train_iter, dev_iter = data_processor.load_data(args) # 将数据分为训练集和验证集 print('加载数据完成') model = TextRNN(args) if args.cuda: model.cuda() optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) steps = 0 best_acc = 0 last_step = 0 model.train() for epoch in range(1, args.epoch + 1): for batch in train_iter: feature, target = batch.text, batch.label # t_()函数表示将(max_len, batch_size)转置为(batch_size, max_len) feature.data.t_(), target.data.sub_(1) # target减去1 if args.cuda: feature, target = feature.cuda(), target.cuda() optimizer.zero_grad() logits = model(feature) loss = F.cross_entropy(logits, target) loss.backward() optimizer.step() steps += 1 if steps % args.log_interval == 0: # torch.max(logits, 1)函数:返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引) corrects = (torch.max(logits, 1)[1] == target).sum() train_acc = 100.0 * corrects / batch.batch_size sys.stdout.write( '\rBatch[{}] - loss: {:.6f} acc: {:.4f}%({}/{})'.format(steps, loss.item(), train_acc, corrects, batch.batch_size)) if steps % args.test_interval == 0: dev_acc = eval(dev_iter, model, args) if dev_acc > best_acc: best_acc = dev_acc last_step = steps if args.save_best: print('Saving best model, acc: {:.4f}%\n'.format(best_acc)) save(model, args.save_dir, 'best', steps) else: if steps - last_step >= args.early_stopping: print('\nearly stop by {} steps, acc: {:.4f}%'.format(args.early_stopping, best_acc)) raise KeyboardInterrupt ''' 对验证集进行测试 ''' def eval(data_iter, model, args): corrects, avg_loss = 0, 0 for batch in data_iter: feature, target = batch.text, batch.label feature.data.t_(), target.data.sub_(1) if args.cuda: feature, target = feature.cuda(), target.cuda() logits = model(feature) loss = F.cross_entropy(logits, target) avg_loss += loss.item() corrects += (torch.max(logits, 1) [1].view(target.size()) == target).sum() size = len(data_iter.dataset) avg_loss /= size accuracy = 100.0 * corrects / size print('\nEvaluation - loss: {:.6f} acc: {:.4f}%({}/{}) \n'.format(avg_loss, accuracy, corrects, size)) return accuracy def save(model, save_dir, save_prefix, steps): if not os.path.isdir(save_dir): os.makedirs(save_dir) save_prefix = os.path.join(save_dir, save_prefix) save_path = '{}_steps_{}.pt'.format(save_prefix, steps) torch.save(model.state_dict(), save_path) train(args)

    结果: 使用单向LSTM,可以看到,前400次迭代loss几乎没有下降,接着开始快速下降,最后验证集的准确率能到91%左右(经过调参可以更高) 数据获取方式:https://download.csdn.net/download/wenweno0o/11206041

    最新回复(0)