在一个 m*n 的棋盘中的每一个格都放一个礼物,每个礼物都有一定的价值(价值大于0).你可以从棋盘的左上角开始拿各种里的礼物,并每次向左或者向下移动一格,直到到达棋盘的右下角。给定一个棋盘及上面个的礼物,请计算你最多能拿走多少价值的礼物?
在这个棋盘中,按照(1,12,5,7,7,16,5)的顺序可以拿到总价值最大的礼物。
一个很直观的想法是,我们将每一步求解出的结果都保存在一个矩阵中。那么在这个问题中就要有一个和原始矩阵等大的矩阵进行存储,但是实际上只需要一个与列数相同维数的一维数组就够了。为什么存储这么少的就够了呢。
在动态规划求解这个问题的时候,我们找出到达每一行中每个位置的最大值,在求解第一行的时候,很明显只能一直向右走,对于第二行的一个数字,很明显只能从 (0,0)(0,0) 走到 (0,1)(0,1) ,这个还是先用与原始矩阵同样大的矩阵进行分析,如下所示 在上图中,如果要求到达 a 点的礼物的最大值,它只与左边的值和它上面的值有关,所以在计算 a 之前就可以将 1 去掉了,因为后面的计算都不会用到 a 的。同理计算出 a 点的最大值之后就可以将 11 替换掉了,因为再求 b 的时候不会再用到。分析到这里我们就可以发现,并不需要一个与原始矩阵等大的矩阵来存储中间计算的值,只需要一个与列数相同的一维向量即可。
该题源码在我的 ?Github 上面!