# 最近临近分类算法:简称KNN,最简单的机器学习算法之一 # 核心逻辑:在距离空间内,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本属于这个类别
from sklearn import neighbors import warnings warnings.filterwarnings('ignore') data= pd.DataFrame({'name':['北京遇上西雅图','喜欢你','疯狂动物城','战狼2','力王','敢死队'], 'fight':[3,2,1,101,99,63], 'kiss':[104,100,81,10,5,2], 'type':['Romance','Romance','Romance','Action','Action','Action']}) print(data) knn = neighbors.KNeighborsClassifier() knn.fit(data[['fight','kiss']],data['type']) print('预测电影类型',knn.predict([[18,90]])) plt.scatter(data[data['type'] == 'Romance']['fight'],data[data['type'] == 'Romance']['kiss'],color = 'r',marker = 'o',label='Romance') plt.scatter(data[data['type'] == 'Action']['fight'],data[data['type'] == 'Action']['kiss'],color = 'g',marker = 'o',label='Action') plt.grid() plt.legend() # 图表展示 plt.scatter(18,90,color='r',marker = 'x',label = 'Remance') plt.ylabel('kiss') plt.xlabel('fight') plt.text(18,90,' 《你的名字》',color='r')