任意一个节点,左右字数的高度差不能为超过1.
先对x左旋转,转化为LL
import java.util.ArrayList;
public class AVLTree<K extends Comparable<K>, V> {
private class Node{ public K key; public V value; public Node left, right; public int height;
public Node(K key, V value){ this.key = key; this.value = value; left = null; right = null; height = 1; } }
private Node root; private int size;
public AVLTree(){ root = null; size = 0; }
public int getSize(){ return size; }
public boolean isEmpty(){ return size == 0; }
// 判断该二叉树是否是一棵二分搜索树 public boolean isBST(){
ArrayList<K> keys = new ArrayList<>(); inOrder(root, keys); for(int i = 1 ; i < keys.size() ; i ++) if(keys.get(i - 1).compareTo(keys.get(i)) > 0) return false; return true; }
private void inOrder(Node node, ArrayList<K> keys){
if(node == null) return;
inOrder(node.left, keys); keys.add(node.key); inOrder(node.right, keys); }
// 判断该二叉树是否是一棵平衡二叉树 public boolean isBalanced(){ return isBalanced(root); }
// 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法 private boolean isBalanced(Node node){
if(node == null) return true;
int balanceFactor = getBalanceFactor(node); if(Math.abs(balanceFactor) > 1) return false; return isBalanced(node.left) && isBalanced(node.right); }
// 获得节点node的高度 private int getHeight(Node node){ if(node == null) return 0; return node.height; }
// 获得节点node的平衡因子 private int getBalanceFactor(Node node){ if(node == null) return 0; return getHeight(node.left) - getHeight(node.right); }
// 对节点y进行向右旋转操作,返回旋转后新的根节点x // y x // / \ / \ // x T4 向右旋转 (y) z y // / \ - - - - - - - -> / \ / \ // z T3 T1 T2 T3 T4 // / \ // T1 T2 private Node rightRotate(Node y) { Node x = y.left; Node T3 = x.right;
// 向右旋转过程 x.right = y; y.left = T3;
// 更新height y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1; x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x; }
// 对节点y进行向左旋转操作,返回旋转后新的根节点x // y x // / \ / \ // T1 x 向左旋转 (y) y z // / \ - - - - - - - -> / \ / \ // T2 z T1 T2 T3 T4 // / \ // T3 T4 private Node leftRotate(Node y) { Node x = y.right; Node T2 = x.left;
// 向左旋转过程 x.left = y; y.right = T2;
// 更新height y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1; x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x; }
// 向二分搜索树中添加新的元素(key, value) public void add(K key, V value){ root = add(root, key, value); }
// 向以node为根的二分搜索树中插入元素(key, value),递归算法 // 返回插入新节点后二分搜索树的根 private Node add(Node node, K key, V value){
if(node == null){ size ++; return new Node(key, value); }
if(key.compareTo(node.key) < 0) node.left = add(node.left, key, value); else if(key.compareTo(node.key) > 0) node.right = add(node.right, key, value); else // key.compareTo(node.key) == 0 node.value = value;
// 更新height node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 计算平衡因子 int balanceFactor = getBalanceFactor(node);
// 平衡维护 // LL if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) return rightRotate(node);
// RR if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) return leftRotate(node);
// LR if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) { node.left = leftRotate(node.left); return rightRotate(node); }
// RL if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) { node.right = rightRotate(node.right); return leftRotate(node); }
return node; }
// 返回以node为根节点的二分搜索树中,key所在的节点 private Node getNode(Node node, K key){
if(node == null) return null;
if(key.equals(node.key)) return node; else if(key.compareTo(node.key) < 0) return getNode(node.left, key); else // if(key.compareTo(node.key) > 0) return getNode(node.right, key); }
public boolean contains(K key){ return getNode(root, key) != null; }
public V get(K key){
Node node = getNode(root, key); return node == null ? null : node.value; }
public void set(K key, V newValue){ Node node = getNode(root, key); if(node == null) throw new IllegalArgumentException(key + " doesn't exist!");
node.value = newValue; }
// 返回以node为根的二分搜索树的最小值所在的节点 private Node minimum(Node node){ if(node.left == null) return node; return minimum(node.left); }
// 从二分搜索树中删除键为key的节点 public V remove(K key){
Node node = getNode(root, key); if(node != null){ root = remove(root, key); return node.value; } return null; }
private Node remove(Node node, K key){
if( node == null ) return null;
Node retNode; if( key.compareTo(node.key) < 0 ){ node.left = remove(node.left , key); // return node; retNode = node; } else if(key.compareTo(node.key) > 0 ){ node.right = remove(node.right, key); // return node; retNode = node; } else{ // key.compareTo(node.key) == 0
// 待删除节点左子树为空的情况 if(node.left == null){ Node rightNode = node.right; node.right = null; size --; // return rightNode; retNode = rightNode; }
// 待删除节点右子树为空的情况 else if(node.right == null){ Node leftNode = node.left; node.left = null; size --; // return leftNode; retNode = leftNode; }
// 待删除节点左右子树均不为空的情况 else{ // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点 // 用这个节点顶替待删除节点的位置 Node successor = minimum(node.right); //successor.right = removeMin(node.right); successor.right = remove(node.right, successor.key); successor.left = node.left;
node.left = node.right = null;
// return successor; retNode = successor; } }
if(retNode == null) return null;
// 更新height retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
// 计算平衡因子 int balanceFactor = getBalanceFactor(retNode);
// 平衡维护 // LL if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) return rightRotate(retNode);
// RR if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) return leftRotate(retNode);
// LR if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) { retNode.left = leftRotate(retNode.left); return rightRotate(retNode); }
// RL if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) { retNode.right = rightRotate(retNode.right); return leftRotate(retNode); }
return retNode; }
public static void main(String[] args){
System.out.println("Pride and Prejudice");
ArrayList<String> words = new ArrayList<>(); if(FileOperation.readFile("pride-and-prejudice.txt", words)) { System.out.println("Total words: " + words.size());
AVLTree<String, Integer> map = new AVLTree<>(); for (String word : words) { if (map.contains(word)) map.set(word, map.get(word) + 1); else map.add(word, 1); }
System.out.println("Total different words: " + map.getSize()); System.out.println("Frequency of PRIDE: " + map.get("pride")); System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
System.out.println("is BST : " + map.isBST()); System.out.println("is Balanced : " + map.isBalanced());
for(String word: words){ map.remove(word); if(!map.isBST() || !map.isBalanced()) throw new RuntimeException(); } }
System.out.println(); } }