mysql prepare原理

    xiaoxiao2025-12-13  7

    注:2013年的老文章

    Prepare的作用 

        Prepare SQL产生的原因。首先从mysql服务器执行sql的过程开始讲起,SQL执行过程包括以下阶段 词法分析->语法分析->语义分析->执行计划优化->执行。词法分析->语法分析这两个阶段我们称之为硬解析。词法分析识别sql中每个词,语法分析解析SQL语句是否符合sql语法,并得到一棵语法树(Lex对于只是参数不同,其他均相同的sql,它们执行时间不同但硬解析的时间是相同的。而同一SQL随着查询数据的变化,多次查询执行时间可能不同,但硬解析的时间是不变的。对于sql执行时间较短,sql硬解析的时间占总执行时间的比率越高。而对于淘宝应用的绝大多数事务型SQL,查询都会走索引,执行时间都比较短。因此淘宝应用db sql硬解析占的比重较大。 

        Prepare的出现就是为了优化硬解析的问题。Prepare在服务器端的执行过程如下

     1)  Prepare 接收客户端带”?”sql, 硬解析得到语法树(stmt->Lex), 缓存在线程所在的preparestatement cache中。此cache是一个HASH MAP. Keystmt->id. 然后返回客户端stmt->id等信息。

     2)  Execute 接收客户端stmt->id和参数等信息。注意这里客户端不需要再发sql过来。服务器根据stmt->idpreparestatement cache中查找得到硬解析后的stmt, 并设置参数,就可以继续后面的优化和执行了。

        Prepareexecute阶段可以节省硬解析的时间。如果sql只执行一次,且以prepare的方式执行,那么sql执行需两次与服务器交互(Prepareexecute而以普通(非prepare)方式,只需要一次交互。这样使用prepare带来额外的网络开销,可能得不偿失。我们再来看同一sql执行多次的情况,比如以prepare方式执行10次,那么只需要一次硬解析。这时候  额外的网络开销就显得微乎其微了。因此prepare适用于频繁执行的SQL

        Prepare的另一个作用是防止sql注入,不过这个是在客户端jdbc通过转义实现的,跟服务器没有关系。 

    硬解析的比重

       交易买家库 tcbyer压测时,通过perf 得到的结果。

       

       硬解析相关的函数比重都比较靠前(MYSQLparse 4.93%, lex_one_token 1.79%, lex_start 1.12%)总共接近8%。因此,服务器使用prepare是可以带来较多的性能提升的。

    jdbc与prepare 

      jdbc服务器端的参数:

       useServerPrepStmts:默认为false. 是否使用服务器prepare开关

      jdbc客户端参数:

       cachePrepStmts:默认false.是否缓存prepareStatement对象。每个连接都有一个缓存,是以sql为唯一标识的LRU cache. 同一连接下,不同stmt可以不用重新创建prepareStatement对象。

       prepStmtCacheSize:LRU cacheprepareStatement对象的个数。一般设置为最常用sql的个数。

       prepStmtCacheSqlLimit:prepareStatement对象的大小。超出大小不缓存。

      Jdbcprepare的处理过程: 

      useServerPrepStmts=true时Jdbc对prepare的处理

       1)  创建PreparedStatement对象,向服务器发送COM_PREPARE命令,并传送带问号的sql. 服务器返回jdbc stmt->id等信息

       2)  向服务器发送COM_EXECUTE命令,并传送参数信息。

      useServerPrepStmts=false时Jdbc对prepare的处理

       1)  创建PreparedStatement对象,此时不会和服务器交互。

       2) 根据参数和PreparedStatement对象拼接完整的SQL,向服务器发送QUERY命令

       我们再看参数cachePrepStmts打开时在useServerPrepStmts为true或false时,均缓存PreparedStatement对象。只不过useServerPrepStmts为的true缓存PreparedStatement对象包含服务器的stmt->id等信息,也就是说如果重用了PreparedStatement对象,那么就省去了和服务器通讯(COM_PREPARE命令)的开销。而useServerPrepStmts=false是,开启cachePrepStmts缓存PreparedStatement对象只是简单的sql解析信息,因此此时开启cachePrepStmts意义不是太大。

    我们来开看一段java代码

    1 2 3 4 5 6 7 8 9 10 11              Connection con =  null ;              PreparedStatement ps =  null ;              String sql =  "select * from user where id=?" ;              ps = con.prepareStatement(sql);                          ps.setInt( 1 ,  1 );‍‍                          ps.executeQuery();                          ps.close();                          ps = con.prepareStatement(sql);                          ps.setInt( 1 ,  3 );                          ps.executeQuery();                          ps.close();

       这段代码在同一会话中两次prepare执行同一语句,并且之间有ps.close();

        useServerPrepStmts=false时,服务器会两次硬解析同一SQL

        useServerPrepStmts=true, cachePrepStmts=false时服务器仍然会两次硬解析同一SQL

        useServerPrepStmts=true, cachePrepStmts=true时服务器只会硬解析一次SQL

     

        如果两次prepare之间没有ps.close();那么cachePrepStmts=truecachePrepStmts=false也只需一次硬解析. 

        因此,客户端对同一sql,频繁分配和释放PreparedStatement对象的情况下,开启cachePrepStmts参数是很有必要的。

    测试

       1)做了一个简单的测试,主要测试prepare的效果和useServerPrepStmts参数的影响.

     

    1 <span style= "font-family: 宋体, SimSun; font-size: 14px;" >        cnt = 5000;<br>        // no prepare <br>        String sql =  "select biz_order_id,out_order_id,seller_nick,buyer_nick,seller_id,buyer_id,auction_id,auction_title,auction_price,buy_amount,biz_type,sub_biz_type,fail_reason,pay_status,logistics_status,out_trade_status,snap_path,gmt_create,status,ifnull(buyer_rate_status, 4) buyer_rate_status from tc_biz_order_0030 where "  +<br>         "parent_id = 594314511722841 or parent_id =547667559932641;" ;<br><br>         begin  = new  Date ();<br>        System. out .println( "begin:"  + df.format( begin ));<br>        <br>        stmt = con.createStatement();<br>         for  ( int  i = 0; i < cnt; i++)<br>        {         <br>            stmt.executeQuery(sql);<br>        } <br>               <br>         end  = new  Date ();<br>        System. out .println( "end:"  + df.format( end ));<br>        <br>        long  temp  =  end .getTime() -  begin .getTime();<br>        System. out .println( "no perpare interval:"  +  temp );<br>        <br>        <br>        // test  prepare        <br>        sql =  "select biz_order_id,out_order_id,seller_nick,buyer_nick,seller_id,buyer_id,auction_id,auction_title,auction_price,buy_amount,biz_type,sub_biz_type,fail_reason,pay_status,logistics_status,out_trade_status,snap_path,gmt_create,status,ifnull(buyer_rate_status, 4) buyer_rate_status from tc_biz_order_0030 where "  +<br>                 "parent_id = 594314511722841 or parent_id =?;" ;<br>        ps = con.prepareStatement(sql);<br>        BigInteger param = new BigInteger( "547667559932641" );<br>        <br>         begin  = new  Date ();<br>        System. out .println( "begin:"  + df.format( begin ));<br>        <br>         for  ( int  i = 0; i < cnt; i++)<br>        {<br>         ps.setObject(1, param);<br>            ps.executeQuery(); <br>        } <br>   <br>         end  = new  Date ();<br>        System. out .println( "end:"  + df.format( end ));<br>        <br>         temp  =  end .getTime() -  begin .getTime();<br>        System. out .println( "prepare interval:"  +  temp );<br></span>

    经多次采样测试结果如下:

    非prepare和prepare时间比useServerPrepStmts=true0.93useServerPrepStmts=false1.01

    结论:

    useServerPrepStmts=true时,prepare提升7%;

    useServerPrepStmts=false时,prepare与非prepare性能相当。 

    如果将语句简化为select * from tc_biz_order_0030 where parent_id =?。那么测试的结论useServerPrepStmts=true时,prepare仅提升2%;sql越简单硬解析的时间就越少,prepare的提升就越少。

    注意:这个测试是在单个连接,单条sql的理想情况下进行的,线上会出现多连接多sql,还有sql执行频率,sql的复杂程度等不同,因此prepare的提升效果会随具体环境而变化。

    2)prepare 前后的perf top 对比

       以下为非prepare

         6.46%   mysqld  mysqld              [.] _Z10MYSQLparsePv

         3.74%   mysqld  libc-2.12.so        [.] __memcpy_ssse3

         2.50%   mysqld  mysqld              [.] my_hash_sort_utf8

         2.15%   mysqld  mysqld              [.] cmp_dtuple_rec_with_match

         2.05%   mysqld  mysqld              [.] _ZL13lex_one_tokenPvS_

         1.46%   mysqld  mysqld              [.] buf_page_get_gen

         1.34%   mysqld  mysqld              [.] page_cur_search_with_match

         1.31%   mysqld  mysqld              [.] _ZL14build_templateP19row_prebuilt_structP3THDP5TABLEj

         1.24%   mysqld  mysqld              [.] rec_init_offsets

         1.11%   mysqld  libjemalloc.so.1    [.] free

         1.09%   mysqld  mysqld              [.] rec_get_offsets_func

         1.01%   mysqld  libjemalloc.so.1    [.] malloc

         0.96%   mysqld  libc-2.12.so        [.] __strlen_sse42

         0.93%   mysqld  mysqld              [.] _ZN4JOIN8optimizeEv

         0.91%   mysqld  mysqld              [.] _ZL15get_hash_symbolPKcjb

         0.88%   mysqld  mysqld              [.] row_search_for_mysql

         0.86%   mysqld  [kernel.kallsyms]   [k] tcp_recvmsg

         

     以下为perpare

         3.46%   mysqld  libc-2.12.so        [.] __memcpy_ssse3

         2.32%   mysqld  mysqld              [.] cmp_dtuple_rec_with_match

         2.14%   mysqld  mysqld              [.] _ZL14build_templateP19row_prebuilt_structP3THDP5TABLEj

         1.96%   mysqld  mysqld              [.] buf_page_get_gen

         1.66%   mysqld  mysqld              [.] page_cur_search_with_match

         1.54%   mysqld  mysqld              [.] row_search_for_mysql

         1.44%   mysqld  mysqld              [.] btr_cur_search_to_nth_level

         1.41%   mysqld  libjemalloc.so.1    [.] free

         1.35%   mysqld  mysqld              [.] rec_init_offsets

         1.32%   mysqld  [kernel.kallsyms]   [k] kfree

         1.14%   mysqld  libjemalloc.so.1    [.] malloc

         1.08%   mysqld  [kernel.kallsyms]   [k] fget_light

         1.05%   mysqld  mysqld              [.] rec_get_offsets_func

         0.99%   mysqld  mysqld              [.] _ZN8Protocol24send_result_set_metadataEP4ListI4ItemEj

         0.90%   mysqld  mysqld              [.] sync_array_print_long_waits

         0.87%   mysqld  mysqld              [.] page_rec_get_n_recs_before

         0.81%   mysqld  mysqld              [.] _ZN4JOIN8optimizeEv

         0.81%   mysqld  libc-2.12.so        [.] __strlen_sse42

         0.78%   mysqld  mysqld              [.] _ZL20make_join_statisticsP4JOINP10TABLE_LISTP4ItemP16st_dynamic_array

         0.72%   mysqld  [kernel.kallsyms]   [k] tcp_recvmsg

         0.63%   mysqld  libpthread-2.12.so  [.] __pthread_getspecific_internal

         0.63%   mysqld  [kernel.kallsyms]   [k] sk_run_filter

         0.60%   mysqld  mysqld              [.] _Z19find_field_in_tableP3THDP5TABLEPKcjbPj

         0.60%   mysqld  mysqld              [.] page_check_dir

         0.57%   mysqld  mysqld              [.] _Z16dispatch_command19enum_server_commandP3THDP

       对比可以发现 MYSQLparse lex_one_token在prepare时已优化掉了。

    思考

       1 开启cachePrepStmts的问题,前面谈到每个连接都有一个缓存,是以sql为唯一标识的LRU cache. 在分表较多,大连接的情况下,可能会个应用服务器带来内存问题。这里有个前提是ibatis是默认使用prepare的。 mybatis中,标签statementType可以指定某个sql是否是使用prepare.

    statementType Any one of STATEMENT, PREPARED or CALLABLE. This causes MyBatis to use Statement, PreparedStatement orCallableStatement respectively. Default: PREPARED.

    这样可以精确控制只对频率较高的sql使用prepare,从而控制使用prepare sql的个数,减少内存消耗。遗憾的是目前集团貌似大多使用的是ibatis 2.0版本,不支持statementType

    标签。

        服务器端prepare cache是一个HASH MAP. Keystmt->id,同时也是每个连接都维护一个。因此也有可能出现内存问题,待实际测试。如有必要需改造成Keysql的全局cache,这样不同连接的相同prepare sql可以共享。 

        3 oracle prepare与mysql prepare的区别:

          mysql与oracle有一个重大区别是mysql没有oracle那样的执行计划缓存。前面我们讲到SQL执行过程包括以下阶段 词法分析->语法分析->语义分析->执行计划优化->执行。oracle的prepare实际上包括以下阶段:词法分析->语法分析->语义分析->执行计划优化,也就是说oracle的prepare做了更多的事情,execute只需要执行即可。因此,oracle的prepare比mysql更高效。

    相关资源:MySQL prepare原理详解
    最新回复(0)