keras权重偏置初始化等相关操作

    xiaoxiao2022-06-25  207

    打印权重

    #构建网络 model = Sequential() model.add(Dense(1, input_shape=(2,), activation='linear', bias_initializer=initializers.Constant(value=0))) model.compile(loss='mean_squared_error', optimizer='adam') # 控制速率衰减 reduce_lr = ReduceLROnPlateau(monitor='loss', patience=100, factor=0.5, mode='auto') # 实时保存文件 checkpointer = ModelCheckpoint(filepath='./weights/weights0522_1.hdf5', monitor='loss', verbose=1, save_best_only=True) model.load_weights('./weights/weights0520_1.hdf5') weights = np.array(model.get_weights()) print(weights)

    也可以这样打印权重

    model.load_weights('./weights/weights0520_1.hdf5') weights, bias = np.array(model.get_weights()) print(weights) print(bias)

    最后三行是重点,用于加载权重并将其打印出来

    设定偏置

    from keras import initializers model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01))) # also works; will use the default parameters. model.add(Dense(64, kernel_initializer='random_normal'))

    上面的是官方实例https://keras-cn.readthedocs.io/en/latest/other/initializations/

    剔除全连接层中的偏置

    #构建网络。注意,全连接层中的偏置已经被失能 model = Sequential() model.add(Dense(1, input_shape=(2,), activation='linear', kernel_initializer=my_init, use_bias=False)) model.compile(loss='mean_squared_error', optimizer='adam')

    use_bias用于设定是否在模型中设置偏重项

    自定义权重系数

    # 通过传统理论,对权重进行初始化 def my_init(shape, dtype=None): return np.array([[1], [100]]) #构建网络。注意,全连接层中的偏置已经被失能 model = Sequential() model.add(Dense(1, input_shape=(2,), activation='linear', kernel_initializer=my_init, use_bias=False)) model.compile(loss='mean_squared_error', optimizer='adam')

    其中my_init函数的形参必须具备shape和dtype这俩玩意儿,同时要注意返回值是个np.array以及它的形状


    最新回复(0)