Python K中心点聚类kmediods聚类代码

    xiaoxiao2022-07-02  128

    import numpy as np from numpy import * import sys from sklearn import metrics import pandas as pd import matplotlib.pyplot as plt def fit_plot_Kmean_model(X): data = pd.read_csv(X, header=None, error_bad_lines=False) # 必须添加header=None,否则默认把第一行数据处理成列名导致缺失 data_list = data.values.tolist() data_list = np.array(data_list) return data_list def choice_center(data,k): k=int(k) centers = [] for i in np.random.choice(len(data), k): centers.append(data[i]) # print("随机选取的中心点(第一次):\n", centers) return centers def distance(a, b): dis = [] for i in range(len(a)): dis.append(pow(a[i] - b[i], 2)) return sqrt(sum(dis)) def k_center(data_list,center,n_clusters,savePath): flag = True i = 0 a=len(data_list[0])-1 n_clusters=int(n_clusters) while flag: flag = False for i in range(len(data_list)): # 遍历所有样本,最后一列标记该样本所属簇 min_index = -2 min_dis = inf for j in range(len(center)): dis = distance(data_list[i][1:n_clusters],center[j][1:n_clusters]) if dis < min_dis: min_dis = dis min_index = j if data_list[i][-1] != min_index: flag = True data_list[i][-1] = min_index # print("分类结果111:",data_list) # 重新计算簇中心 for k in range(len(center)): # 遍历中心向量,取出属于当前中心向量簇的样本 current_k = [] for i in range(len(data_list)): if data_list[i][-1] == k: current_k.append(data_list[i]) # print(k, ":", current_k) old_dis = 0.0 for i in range(len(current_k)): old_dis += distance(current_k[i][1:n_clusters], center[k][1:n_clusters]) for m in range(len(current_k)): new_dis = 0.0 for n in range(len(current_k)): new_dis += distance(current_k[m][1:n_clusters], current_k[n][1:n_clusters]) if new_dis < old_dis: old_dis = new_dis center[k][:] = current_k[m][:] # print("选中的最终中心点", center) for i in range(len(data_list)): # 遍历所有样本,最后一列标记该样本所属簇 min_index = -2 min_dis = inf for j in range(len(center)): dis = distance(data_list[i][1:n_clusters], center[j][1:n_clusters]) if dis < min_dis: min_dis = dis min_index = j data_list[i][-1] = min_index # print("分类结果222:", data_list) y_pred=data_list[:,a] # print("y_pred:", y_pred) score=metrics.calinski_harabaz_score(data_list,y_pred) plt.figure(figsize=(12, 12)) plt.xticks(()) plt.yticks(()) plt.subplot(221) plt.scatter(data_list[:, 0], data_list[:, 1]) plt.title("Raw data") plt.subplot(222) plt.scatter(data_list[:, 0], data_list[:, 1], c=y_pred) plt.title("Kmediods:k={},score={}".format(n_clusters, int(score))) # plt.title("DBSCAN:k={},eps={},min_samples={}".format(n_clusters, eps, min_samples)) # 字典中的key值即为csv中列名 dataframe = pd.DataFrame(y_pred) # 将DataFrame存储为csv,index表示是否显示行名,default=True savePath = savePath + "\\Kmediods_result.csv" dataframe.to_csv(savePath, header=False, index=False, sep=',') plt.show() a = 'OK' return a if __name__ == '__main__': data_list=fit_plot_Kmean_model(sys.argv[2]) # 1为选取的中心点个数,2为文件打开路径,3为文件保存路径 centers = choice_center(data_list,sys.argv[1]) print(k_center(data_list, centers,sys.argv[1],sys.argv[3])) # data_list = fit_plot_Kmean_model('C:\\Users\\upc\\Desktop\\testdata.csv') # # 1为选取的中心点个数,2为文件打开路径,3为文件保存路径 # centers = choice_center(data_list, 4) # print(k_center(data_list, centers,4, 'C:\\Users\\upc\\Desktop')) # 1为选取的中心点个数,2为文件打开路径,3为文件保存路径 # print(k_center(fit_plot_Kmean_model(sys.argv[2]), choice_center(fit_plot_Kmean_model(sys.argv[2]),sys.argv[1]),sys.argv[1],sys.argv[3])) # print(k_center(fit_plot_Kmean_model('C:\\Users\\upc\\Desktop\\testdata.csv'), choice_center(fit_plot_Kmean_model('C:\\Users\\upc\\Desktop\\testdata.csv'),4),4,'C:\\Users\\upc\\Desktop')) hiddenimports=['pandas','cython','numpy', 'sklearn','sklearn.metrics','sklearn.metrics.get_scorer','sklearn.metrics.cluster','sklearn.ensemble','sklearn.neighbors.typedefs','sklearn.neighbors.quad_tree','sklearn.tree._utils','scipy._lib.messagestream','email.mime.message', 'email.mime.image', 'email.mime.multipart', 'email.mime.audio', 'email.mime.text'],
    最新回复(0)