自编码实例5:栈式自编码

    xiaoxiao2022-07-02  124

           栈式自编码神经网络(Stacked Autoencoder, SA),是对自编码网络的一种使用方法,是一个由多层训练好的自编码器组成的神经网络。由于网络中的每一层都是单独训练而来,相当于都初始化了一个合理的数值。所以,这样的网络会更容易训练,并且有更快的收敛性及更高的准确度。

           栈式自编码常常被用于预训练(初始化)深度神经网络之前的权重预训练步骤。例如在一个分类问题上,可以按照从前向后的顺序执行每一层通过自编码器来训练,最终将网络中最深层的输出作为softmax分类器的输入特征,通过softmax层将其分开。

           为了使这个过程容易理解,下面以训练一个包含两个隐含层的栈式自编码网络为例。

    (1)训练一个自编码器,得到原始输入的一阶特征表示h。

    (2)将上一步输出的特征h作为输入,对其进行再一次的自编码,并同时获取特征h

    (3)把上一步的特征h连上softmax分类器

    (4)把这3层结合起来,就构成了一个包含两个隐藏层加一个softmax的栈式自编码网络

    常用方法:代替和级联。

    实例:首先建立一个去噪自编码,然后再对第一层的输出做一次简单的自编码压缩,然后再将第二层的输出做一个softmax的分类,最后,把这3个网络里的中间层拿出来,组成一个新的网络进行微调

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/data/", one_hot=True) train_X = mnist.train.images train_Y = mnist.train.labels test_X = mnist.test.images test_Y = mnist.test.labels print ("MNIST ready") tf.reset_default_graph() # 参数 n_input = 784 n_hidden_1 = 256 #第一层自编码 n_hidden_2 = 128 #第二层自编码 n_classes = 10 # 第一层 x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_input]) dropout_keep_prob = tf.placeholder("float") # 第二层 l2x = tf.placeholder("float", [None, n_hidden_1]) l2y = tf.placeholder("float", [None, n_hidden_1]) # 第三层 l3x = tf.placeholder("float", [None, n_hidden_2]) l3y = tf.placeholder("float", [None, n_classes]) # WEIGHTS weights = { #网络1 784-256-784 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'l1_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_1])), 'l1_out': tf.Variable(tf.random_normal([n_hidden_1, n_input])), #网络2 256-128-256 'l2_h1': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'l2_h2': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_2])), 'l2_out': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), #网络3 128-10 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.zeros([n_hidden_1])), 'l1_b2': tf.Variable(tf.zeros([n_hidden_1])), 'l1_out': tf.Variable(tf.zeros([n_input])), 'l2_b1': tf.Variable(tf.zeros([n_hidden_2])), 'l2_b2': tf.Variable(tf.zeros([n_hidden_2])), 'l2_out': tf.Variable(tf.zeros([n_hidden_1])), 'out': tf.Variable(tf.zeros([n_classes])) } #第一层的编码输出 l1_out = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['h1']), biases['b1'])) #l1 编码 def noise_l1_autodecoder(layer_1, _weights, _biases, _keep_prob): layer_1out = tf.nn.dropout(layer_1, _keep_prob) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1out, _weights['l1_h2']), _biases['l1_b2'])) layer_2out = tf.nn.dropout(layer_2, _keep_prob) return tf.nn.sigmoid(tf.matmul(layer_2out, _weights['l1_out']) + _biases['l1_out']) # 第一层的解码输出 l1_reconstruction = noise_l1_autodecoder(l1_out, weights, biases, dropout_keep_prob) # 计算损失 l1_cost = tf.reduce_mean(tf.pow(l1_reconstruction-y, 2)) l1_optm = tf.train.AdamOptimizer(0.01).minimize(l1_cost) #第二层的编码输出 def l2_autodecoder(layer1_2, _weights, _biases): layer1_2out = tf.nn.sigmoid(tf.add(tf.matmul(layer1_2, _weights['l2_h2']), _biases['l2_b2'])) return tf.nn.sigmoid(tf.matmul(layer1_2out, _weights['l2_out']) + _biases['l2_out']) l2_out = tf.nn.sigmoid(tf.add(tf.matmul(l2x, weights['l2_h1']), biases['l2_b1'])) # 第二层的解码输出 l2_reconstruction = l2_autodecoder(l2_out, weights, biases) l2_cost = tf.reduce_mean(tf.pow(l2_reconstruction-l2y, 2)) optm2 = tf.train.AdamOptimizer(0.01).minimize(l2_cost) #l3 分类 l3_out = tf.matmul(l3x, weights['out']) + biases['out'] l3_cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=l3_out, labels=l3y)) l3_optm = tf.train.AdamOptimizer(0.01).minimize(l3_cost) #3层 级联 #1联2 l1_l2out = tf.nn.sigmoid(tf.add(tf.matmul(l1_out, weights['l2_h1']), biases['l2_b1'])) # 2联3 pred = tf.matmul(l1_l2out, weights['out']) + biases['out'] cost3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=l3y)) optm3 = tf.train.AdamOptimizer(0.001).minimize(cost3) print ("l3 级联 ") # 训练 epochs = 50 batch_size = 100 disp_step = 10 load_epoch =49

    第一层训练

    # 第一层训练 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print ("开始训练") for epoch in range(epochs): num_batch = int(mnist.train.num_examples/batch_size) total_cost = 0. for i in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) batch_xs_noisy = batch_xs + 0.3*np.random.randn(batch_size, 784) feeds = {x: batch_xs_noisy, y: batch_xs, dropout_keep_prob: 0.5} sess.run(l1_optm, feed_dict=feeds) total_cost += sess.run(l1_cost, feed_dict=feeds) # DISPLAY if epoch % disp_step == 0: print ("Epoch d/d average cost: %.6f" % (epoch, epochs, total_cost/num_batch)) print(sess.run(weights['h1'])) print (weights['h1'].name) print ("完成") show_num = 10 test_noisy = mnist.test.images[:show_num] + 0.3*np.random.randn(show_num, 784) encode_decode = sess.run( l1_reconstruction, feed_dict={x: test_noisy, dropout_keep_prob: 1.}) f, a = plt.subplots(3, 10, figsize=(10, 3)) for i in range(show_num): a[0][i].imshow(np.reshape(test_noisy[i], (28, 28))) a[1][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) a[2][i].matshow(np.reshape(encode_decode[i], (28, 28)), cmap=plt.get_cmap('gray')) plt.show()

    第二层训练

    # 第二层训练 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print ("开始训练") for epoch in range(epochs): num_batch = int(mnist.train.num_examples/batch_size) total_cost = 0. for i in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) l1_h = sess.run(l1_out, feed_dict={x: batch_xs, y: batch_xs, dropout_keep_prob: 1.}) _,l2cost = sess.run([optm2,l2_cost], feed_dict={l2x: l1_h, l2y: l1_h }) total_cost += l2cost # log if epoch % disp_step == 0: print ("Epoch d/d average cost: %.6f" % (epoch, epochs, total_cost/num_batch)) print(sess.run(weights['h1'])) print (weights['h1'].name) print ("完成 layer_2 训练") show_num = 10 testvec = mnist.test.images[:show_num] out1vec = sess.run(l1_out, feed_dict={x: testvec,y: testvec, dropout_keep_prob: 1.}) out2vec = sess.run(l2_reconstruction, feed_dict={l2x: out1vec}) f, a = plt.subplots(3, 10, figsize=(10, 3)) for i in range(show_num): a[0][i].imshow(np.reshape(testvec[i], (28, 28))) a[1][i].matshow(np.reshape(out1vec[i], (16, 16)), cmap=plt.get_cmap('gray')) a[2][i].matshow(np.reshape(out2vec[i], (16, 16)), cmap=plt.get_cmap('gray')) plt.show()

    第三层训练

    # 第三层 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print ("开始训练") for epoch in range(epochs): num_batch = int(mnist.train.num_examples/batch_size) total_cost = 0. for i in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) l1_h = sess.run(l1_out, feed_dict={x: batch_xs, y: batch_xs, dropout_keep_prob: 1.}) l2_h = sess.run(l2_out, feed_dict={l2x: l1_h, l2y: l1_h }) _,l3cost = sess.run([l3_optm,l3_cost], feed_dict={l3x: l2_h, l3y: batch_ys}) total_cost += l3cost # DISPLAY if epoch % disp_step == 0: print ("Epoch d/d average cost: %.6f" % (epoch, epochs, total_cost/num_batch)) print ("完成 layer_3 训练") # 测试 model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(l3y, 1)) # 计算准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print ("Accuracy:", accuracy.eval({x: mnist.test.images, l3y: mnist.test.labels}))

    级联微调

    # 级联微调 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print ("开始训练") for epoch in range(epochs): num_batch = int(mnist.train.num_examples/batch_size) total_cost = 0. for i in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) feeds = {x: batch_xs, l3y: batch_ys} sess.run(optm3, feed_dict=feeds) total_cost += sess.run(cost3, feed_dict=feeds) # DISPLAY if epoch % disp_step == 0: print ("Epoch d/d average cost: %.6f" % (epoch, epochs, total_cost/num_batch)) print ("完成 级联 训练") # 测试 model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(l3y, 1)) # 计算准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print ("Accuracy:", accuracy.eval({x: mnist.test.images, l3y: mnist.test.labels})) 开始训练 Epoch 00/50 average cost: 1.544741 Epoch 10/50 average cost: 0.070898 Epoch 20/50 average cost: 0.010157 Epoch 30/50 average cost: 0.001123 Epoch 40/50 average cost: 0.000119 完成 级联 训练 Accuracy: 0.9613

    可以看到,由于网络模型中各层的初始值已经训练好了,所以开始就是很低的错误率。

     

    最新回复(0)