集合框架Map——HashMap

    xiaoxiao2022-07-03  120

    Map

    HashMap

    介绍

    HashMap底层由数组+单向链表+红黑树组成HashMap是一个存储键值对的集合,允许存储null键和null值HashMap线程不安全HashMap不能保证放入元素的顺序,它是无序的HashMap在Ijdk1.8解决哈希冲突,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。多线程环境中推荐ConcurrentHashMap

    理解

    数组Node[] node 数组默认长度2的4次方 16数组最大长度2的30次方 负载因子0.75,用于扩容 也就是16*0.75=12,长度大于12进行扩容。 链表默认长度8 如果链表长度超过了8,变形为红黑树

    存取过程

    put键值对的方法的过程是:

    public V put(K key, V value) { // 对key的hashCode()做hash return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // tab为空则创建 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 计算index,并对null做处理 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; // 节点存在 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 该链为树 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 该链为链表 else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } // 写入 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; // 超过load factor*current capacity,resize if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }

    对key的hashCode()做hash,然后再计算index;如果没碰撞直接放到bucket里;如果碰撞了,以链表的形式存在buckets后;如果碰撞导致链表过长(大于等于TREEIFY_THRESHOLD),就把链表转换成红黑树;如果节点已经存在就替换old value(保证key的唯一性)如果bucket满了(超过load factor*current capacity),就要resize。

    get值方法的过程是:

    public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 直接命中 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 未命中 if ((e = first.next) != null) { // 在树中get if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 在链表中get do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } 指定key 通过hash函数得到key的hash值 int hash=key.hashCode();调用内部方法 getNode(),得到桶号(一般为hash值对桶数求模) int index =hash%Entry[].length; jdk1.6版本后使用位运算替代模运算,int index=hash&( Entry[].length - 1);比较桶的内部元素是否与key相等,若都不相等,则没有找到。相等,则取出相等记录的value。如果得到 key 所在的桶的头结点恰好是红黑树节点,就调用红黑树节点的 getTreeNode() 方法,否则就遍历链表节点。getTreeNode 方法使通过调用树形节点的 find()方法进行查找。由于之前添加时已经保证这个树是有序的,因此查找时基本就是折半查找,效率很高。如果对比节点的哈希值和要查找的哈希值相等,就会判断 key 是否相等,相等就直接返回;不相等就从子树中递归查找。

    HashMap中直接地址用hash函数生成;解决冲突,用比较函数解决。如果每个桶内部只有一个元素,那么查找的时候只有一次比较。当许多桶内没有值时,许多查询就会更快了(指查不到的时候)。

    扩容

    当put时,如果发现目前的bucket占用程度已经超过了Load Factor所希望的比例,那么就会发生resize。在resize的过程,简单的说就是把bucket扩充为2倍,之后重新计算index,把节点再放到新的bucket中。resize的注释是这样描述的:

    Initializes or doubles table size. If null, allocates in accord with initial capacity target held in field threshold. Otherwise, because we are using power-of-two expansion, the elements from each bin must either stay at same index, or move with a power of two offset in the new table.

    大致意思就是说,当超过限制的时候会resize,然而又因为我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。 怎么理解呢?例如我们从16扩展为32时,具体的变化如下所示: 因此元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化: 因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”。可以看看下图为16扩充为32的resize示意图: 这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。 代码实现:

    final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { // 超过最大值就不再扩充了,就只好随你碰撞去吧 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 没超过最大值,就扩充为原来的2倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 计算新的resize上限 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { // 把每个bucket都移动到新的buckets中 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; // 原索引 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } // 原索引+oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 原索引放到bucket里 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } // 原索引+oldCap放到bucket里 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }

    hash函数的实现

    在get和put的过程中,计算下标时,先对hashCode进行hash操作,然后再通过hash值进一步计算下标,如下图所示: 在对hashCode()计算hash时具体实现是这样的:

    static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }

    可以看到这个函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或。 在获取HashMap的元素时,基本分两步:

    首先根据hashCode()做hash,然后确定bucket的index; 如果bucket的节点的key不是我们需要的,则通过keys.equals()在链中

    在Java 8之前的实现中是用链表解决冲突的,在产生碰撞的情况下,进行get时,两步的时间复杂度是O(1)+O(n)。因此,当碰撞很厉害的时候n很大,O(n)的速度显然是影响速度的。 因此在Java 8中,利用红黑树替换链表,这样复杂度就变成了O(1)+O(logn)了,这样在n很大的时候,能够比较理想的解决这个问题。

    线程不安全

    在两个线程同时尝试扩容HashMap时,可能将一个链表形成环形的链表,所有的next都不为空,进入死循环。 HashMap的容量是有限的。当经过多次元素插入,使得HashMap达到一定饱和度时,Key映射位置发生冲突的几率会逐渐提高。这时候,HashMap需要扩展它的长度,也就是进行Resize。1.扩容:创建一个新的Entry空数组,长度是原数组的2倍。2.ReHash:遍历原Entry数组,把所有的Entry重新Hash到新数组。

    在两个线程同时进行put时可能造成一个线程数据的丢失

    解决 hash 冲突的常见方法

    a. 链地址法:将哈希表的每个单元作为链表的头结点,所有哈希地址为 i 的元素构成一个同义词链表。即发生冲突时就把该关键字链在以该单元为头结点的链表的尾部。 b. 开放定址法:即发生冲突时,去寻找下一个空的哈希地址。只要哈希表足够大,总能找到空的哈希地址。 c. 再哈希法:即发生冲突时,由其他的函数再计算一次哈希值。 d. 建立公共溢出区:将哈希表分为基本表和溢出表,发生冲突时,将冲突的元素放入溢出表。 HashMap 就是使用链地址法来解决冲突的(jdk8中采用平衡树来替代链表存储冲突的元素,但hash() 方法原理相同)。数组中的每一个单元都会指向一个链表,如果发生冲突,就将 put 进来的 K- V 插入到链表的尾部。

    对红黑树的见解

    1、每个节点非红即黑

    2、根节点总是黑色的

    3、如果节点是红色的,则它的子节点必须是黑色的(反之不一定)

    4、每个叶子节点都是黑色的空节点(NIL节点)

    5、从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)

    总结

    get和put的原理:通过对key的hashCode()进行hashing,并计算下标( n-1 & hash),从而获得buckets的位置。如果产生碰撞,则利用key.equals()方法去链表或树中去查找对应的节点 hash的实现:在Java 1.8的实现中,是通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在bucket的n比较小的时候,也能保证考虑到高低bit都参与到hash的计算中,同时不会有太大的开销。 HashMap的大小超过了负载因子定义的容量:如果超过了负载因子(默认0.75),则会重新resize一个原来长度两倍的HashMap,并且重新调用hash方法。

    最新回复(0)