给初学者的深度学习简介

    xiaoxiao2022-07-03  108

    深度学习是计算机领域中目前非常火的话题,不仅在学术界有很多论文,在业界也有很多实际运用。本篇博客主要介绍了三种基本的深度学习的架构,并对深度学习的原理作了简单的描述。本篇文章翻译自Medium上一篇入门介绍。

    深度学习是计算机领域中目前非常火的话题,不仅在学术界有很多论文,在业界也有很多实际运用。本篇博客主要介绍了三种基本的深度学习的架构,并对深度学习的原理作了简单的描述。

    简介

    机器学习技术在当代社会已经发挥了很大的作用:从网络搜索到社交网络中的内容过滤到电子商务网站的个性化推荐,它正在快速的出现在用户的消费品中,如摄像机和智能手机。机器学习系统可以用来识别图像中的物体,将语音转变成文字,匹配用户感兴趣的新闻、消息和产品等,也可以选择相关的搜索结果。这些应用越来越多的使用一种叫做“深度学习(Deep Learning)”的技术。

    如果你想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。

    深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。它尝试为数据的高层次摘要进行建模。以一个简单的例子来说,假设你有两组神经元,一个是接受输入的信号,一个是发送输出的信号。当输入层接收到输入信号的时候,它将输入层做一个简单的修改并传递给下一层。在一个深度网络中,输入层与输出层之间可以有很多的层(这些层并不是由神经元组成的,但是它可以以神经元的方式理解),允许算法使用多个处理层,并可以对这些层的结果进行线性和非线性的转换。

    译者补充:深度学习的思想与人工神经网络思想是一致的。总的来说,神经网络是一种机器学习架构,所有的个体单元以权重的方式连接在一起,且这些权重是通过网络来训练的,那么它就可以称之为神经网络算法。人工神经网络算法的思想来源于模仿人类大脑思考的方式。人类大脑是通过神经系统得到输入信号再作出相应反映的,而接受外部刺激的方式是用神经元接受神经末梢转换的电信号。那么,我们希望通过人造神经元的方式模拟大脑的思考,这就产生了人工神经网络了。人工神经元组成了人工神经网络的计算单元,而人工神经网络结构描述了这些神经元的连接方式。我们可以采用层的方式组织神经元,层与层之间可以互相连接。以前受制于很多因素,我们无法添加很多层,而现在随着算法的更新、数据量的增加以及GPU的发展,我们可以用很多的层来开发神经网络,这就产生了深度神经网络。而深度学习其实就是深度神经网络的一个代名词。关于人工神经网络算法可以参考人工神经网络(Artificial Neural Network)算法简介。

    近些年来,深度学习通过在某些任务中极佳的表现正在改革机器学习。深度学习方法在会话识别、图像识别、对象侦测以及如药物发现和基因组学等领域表现出了惊人的准确性。但是,“深度学习”这个词语很古老,它在1986年由Dechter在机器学习领域提出,然后在2000年有Aizenberg等人引入到人工神经网络中。而现在,由于Alex Krizhevsky在2012年使用卷积网络结构赢得了ImageNet比赛之后受到大家的瞩目。

    深度学习架构

    1、生成式深度架构(Generative deep architectures),主要是用来描述具有高阶相关性的可观测数据或者是可见的对象的特征,主要用于模式分析或者是总和的目的,或者是描述这些数据与他们的类别之间的联合分布。(其实就是类似与生成模型) 2、判别式深度架构(Discriminative deep architectures),主要用于提供模式分类的判别能力,经常用来描述在可见数据条件下物体的后验类别的概率。(类似于判别模型) 3、混合深度架构(Hybrid deep architectures),目标是分类,但是和生成结构混合在一起了。比如以正在或者优化的方式引入生成模型的结果,或者使用判别标注来学习生成模型的参数。

    尽管上述深度学习架构的分类比较复杂,其实实际中对应的模型的例子就是深度前馈网络,卷积网络和递归神经网络(Deep feed-forward networks, Convolution networks and Recurrent Networks)。

    深度前馈网络(Deep feed-forward networks)

    深度前馈网络也叫做前馈神经网络,或者是多层感知机(Multilayer Perceptrons,MLPs),是深度学习模型中的精粹。

    前馈网络的目标是近似某些函数。例如,对于一个分类器,。 RNN的一些类型是LSTM,双向RNN,GRU等。

    由于任何输入和输出都可以在RNN中变成一对一或者多对多的形式,RNN可以用在自然语言处理、机器翻译、语言模型、图像识别、视频分析、图像生成、验证码识别等领域。下图展示了RNN可能的结构以及对模型的解释。

    应用

    深度学习有很多应用,很多特别的问题也可以通过深度学习解决。一些深度学习的应用举例如下:

    黑白图像的着色

    深度学习可以用来根据对象及其情景来为图片上色,而且结果很像人类的着色结果。这中解决方案使用了很大的卷积神经网络和有监督的层来重新创造颜色。

    机器翻译

    深度学习可以对未经处理的语言序列进行翻译,它使得算法可以学习单词之间的依赖关系,并将其映射到一种新的语言中。大规模的LSTM的RNN网络可以用来做这种处理。

    图像中的对象分类与检测

    这种任务需要将图像分成之前我们所知道的某一种类别中。目前这类任务最好的结果是使用超大规模的卷积神经网络实现的。突破性的进展是Alex Krizhevsky等人在ImageNet比赛中使用的AlexNet模型。

    自动产生手写体

    这种任务是先给定一些手写的文字,然后尝试生成新的类似的手写的结果。首先是人用笔在纸上手写一些文字,然后根据写字的笔迹作为语料来训练模型,并最终学习产生新的内容。

    自动玩游戏

    这项任务是根据电脑屏幕的图像,来决定如何玩游戏。这种很难的任务是深度强化模型的研究领域,主要的突破是DeepMind团队的成果。

    聊天机器人

    一种基于sequence to sequence的模型来创造一个聊天机器人,用以回答某些问题。它是根据大量的实际的会话数据集产生的。想了解详情,可以参考:https://medium.com/shridhar743/generative-model-chatbots-e422ab08461e

    结论

    从本篇博客来看,由于模仿了人类大脑,深度学习可以运用在很多领域中。目前有很多领域都在研究使用深度学习解决问题。尽管目前信任是个问题,但是它终将被解决。

                         
    最新回复(0)