转自:http://www.52im.net/article-340-1.html
美国时间2018年09 月 25 日,Oralce 正式发布了 Java 11,这是 Java 8 发布以后支持的首个长期版本。
为什么说是长期版本,看下面的官方发布的支持路线图表:
可以看出 Java 8 扩展支持到 2025 年,而 Java 11 扩展支持到 2026 年。
现在大部分都在用 Java 8,Java 9 和 10 目前很少有人在用,至少我没有发现有公司在生产环境应用的,那就是找死。现在 Java 11 长期支持,也已经包含了 9 和 10 的全部功能,9 和 10 自然就活到头了。。
那么我们来看下 从 Java 9 - 11 都有哪些重要的新特性呢?
这个博主已经写过一篇文章,详细的介绍了 Java 10 带来的这个新特性。
什么是局部变量类型推断?
var javastack = "javastack"; System.out.println(javastack);
大家看出来了,局部变量类型推断就是左边的类型直接使用 var 定义,而不用写具体的类型,编译器能根据右边的表达式自动推断类型,如上面的 String 。
var javastack = "javastack";
就等于:
String javastack = "javastack";
更多使用详情请参考这篇文章《Java 10 实战第 1 篇:局部变量类型推断》,这里不再重复了。
Java 11 增加了一系列的字符串处理方法,如以下所示。
// 判断字符串是否为空白 " ".isBlank(); // true // 去除首尾空格 " Javastack ".strip(); // "Javastack" // 去除尾部空格 " Javastack ".stripTrailing(); // " Javastack" // 去除首部空格 " Javastack ".stripLeading(); // "Javastack " // 复制字符串 "Java".repeat(3); // "JavaJavaJava" // 行数统计 "A\nB\nC".lines().count(); // 3
自 Java 9 开始,Jdk 里面为集合(List/ Set/ Map)都添加了 of 和 copyOf 方法,它们两个都用来创建不可变的集合,来看下它们的使用和区别。
示例1:
var list = List.of("Java", "Python", "C"); var copy = List.copyOf(list); System.out.println(list == copy); // true示例2:
var list = new ArrayList<String>(); var copy = List.copyOf(list); System.out.println(list == copy); // false
来看下它们的源码:
static <E> List<E> of(E... elements) { switch (elements.length) { // implicit null check of elements case 0: return ImmutableCollections.emptyList(); case 1: return new ImmutableCollections.List12<>(elements[0]); case 2: return new ImmutableCollections.List12<>(elements[0], elements[1]); default: return new ImmutableCollections.ListN<>(elements); } } static <E> List<E> copyOf(Collection<? extends E> coll) { return ImmutableCollections.listCopy(coll); } static <E> List<E> listCopy(Collection<? extends E> coll) { if (coll instanceof AbstractImmutableList && coll.getClass() != SubList.class) { return (List<E>)coll; } else { return (List<E>)List.of(coll.toArray()); } }
可以看出 copyOf 方法会先判断来源集合是不是 AbstractImmutableList 类型的,如果是,就直接返回,如果不是,则调用 of 创建一个新的集合。
示例2因为用的 new 创建的集合,不属于不可变 AbstractImmutableList 类的子类,所以 copyOf 方法又创建了一个新的实例,所以为false.
注意:使用 of 和 copyOf 创建的集合为不可变集合,不能进行添加、删除、替换、排序等操作,不然会报 java.lang.UnsupportedOperationException 异常。
上面演示了 List 的 of 和 copyOf 方法,Set 和 Map 接口都有。
Stream 是 Java 8 中的新特性,Java 9 开始对 Stream 增加了以下 4 个新方法。
1) 增加单个参数构造方法,可为null
Stream.ofNullable(null).count(); // 02) 增加 takeWhile 和 dropWhile 方法
Stream.of(1, 2, 3, 2, 1) .takeWhile(n -> n < 3) .collect(Collectors.toList()); // [1, 2]从开始计算,当 n < 3 时就截止。
Stream.of(1, 2, 3, 2, 1) .dropWhile(n -> n < 3) .collect(Collectors.toList()); // [3, 2, 1]
这个和上面的相反,一旦 n < 3 不成立就开始计算。
3)iterate重载
这个 iterate 方法的新重载方法,可以让你提供一个 Predicate (判断条件)来指定什么时候结束迭代。
如果你对 JDK 8 中的 Stream 还不熟悉,可以看之前分享的这一系列教程。
Opthonal 也增加了几个非常酷的方法,现在可以很方便的将一个 Optional 转换成一个 Stream, 或者当一个空 Optional 时给它一个替代的。
Optional.of("javastack").orElseThrow(); // javastack Optional.of("javastack").stream().count(); // 1 Optional.ofNullable(null) .or(() -> Optional.of("javastack")) .get(); // javastack
InputStream 终于有了一个非常有用的方法:transferTo,可以用来将数据直接传输到 OutputStream,这是在处理原始数据流时非常常见的一种用法,如下示例。
var classLoader = ClassLoader.getSystemClassLoader(); var inputStream = classLoader.getResourceAsStream("javastack.txt"); var javastack = File.createTempFile("javastack2", "txt"); try (var outputStream = new FileOutputStream(javastack)) { inputStream.transferTo(outputStream); }
这是 Java 9 开始引入的一个处理 HTTP 请求的的孵化 HTTP Client API,该 API 支持同步和异步,而在 Java 11 中已经为正式可用状态,你可以在 java.net 包中找到这个 API。
Java的类型文件格式将被拓展,支持一种新的常量池格式:CONSTANT_Dynamic,加载CONSTANT_Dynamic会将创建委托给bootstrap方法。
其目标是降低开发新形式的可实现类文件约束带来的成本和干扰。
JDK上对这个特性的描述是:开发一个处理内存分配但不实现任何实际内存回收机制的GC,一旦可用堆内存用完,JVM就会退出。
如果有System.gc()的调用,实际上什么也不会发生(这种场景下和-XX:+DisableExplicitGC效果一样),因为没有内存回收,这个实现可能会警告用户尝试强制GC是徒劳。
用法非常简单:
-XX:+UseEpsilonGC。提供完全被动的GC实现,具有有限的分配限制和尽可能低的延迟开销,但代价是内存占用和内存吞吐量。
众所周知,Java实现可广泛选择高度可配置的GC实现。 各种可用的收集器最终满足不同的需求,即使它们的可配置性使它们的功能相交。 有时更容易维护单独的实现,而不是在现有GC实现上堆积另一个配置选项。
它的主要用途如下:
性能测试(它可以帮助过滤掉GC引起的性能假象);内存压力测试(例如,知道测试用例应该分配不超过1 GB的内存,我们可以使用-Xmx1g配置-XX:+UseEpsilonGC,如果违反了该约束,则会heap dump并崩溃);非常短的JOB任务(对于这种任务,接受GC清理堆那都是浪费空间);VM接口测试;Last-drop 延迟&吞吐改进;Java EE和CORBA两个模块在JDK9中已经标记"deprecated",在JDK11中正式移除。JDK中deprecated的意思是在不建议使用,在未来的release版本会被删除。
JavaEE由4部分组成:
JAX-WS (Java API for XML-Based Web Services),JAXB (Java Architecture for XML Binding)JAF (the JavaBeans Activation Framework)Common Annotations.但是这个特性和JavaSE关系不大。并且JavaEE被维护在Github(https://github.com/javaee)中,版本同步造成维护困难。最后,JavaEE可以单独引用,maven中心仓库也提供了JavaEE(http://mvnrepository.com/artifact/javax/javaee-api/8.0),所以没必要把JavaEE包含到JavaSE中。
至于CORBA,使用Java中的CORBA开发程序没有太大的兴趣。因此,在JavaEE就把CORBA标记为"Proposed Optional",这就表明将来可能会放弃对这些技术的必要支持。
将JDK9引进并孵化的HTTP客户端API作为标准,即HTTP/2 Client。它定义了一个全新的实现了HTTP/2和WebSocket的HTTP客户端API,并且可以取代HttpURLConnection。 动机
已经存在的HttpURLConnection有如下问题:
在设计时考虑了多种协议,但是现在几乎所有协议现已不存在。API早于HTTP/1.1并且太抽象;使用很不友好;只能以阻塞模式工作;非常难维护;在声明隐式类型的lambda表达式的形参时允许使用var。
lamdba表达式可能是隐式类型的,它形参的所有类型全部靠推到出来的。隐式类型lambda表达式如下:
(x, y) -> x.process(y)Java SE 10让隐式类型变量可用于本地变量:
var foo = new Foo(); for (var foo : foos) { ... } try (var foo = ...) { ... } catch ...为了和本地变量保持一致,我们希望允许var作为隐式类型lambda表达式的形参:
(var x, var y) -> x.process(y)统一格式的一个好处就是modifiers和notably注解能被加在本地变量和lambda表达式的形参上,并且不会丢失简洁性:
@Nonnull var x = new Foo(); (@Nonnull var x, @Nullable var y) -> x.process(y)用RFC 7748中描述到的 Curve25519 和Curve448 实现秘钥协议。RFC 7748定义的秘钥协商方案更高效,更安全。这个JEP的主要目标就是为这个标准定义API和实现。
密码学要求使用 Curve25519 和Curve448 是因为它们的安全性和性能。JDK会增加两个新的接口XECPublicKey 和 XECPrivateKey,示例代码如下:
KeyPairGenerator kpg = KeyPairGenerator.getInstance("XDH"); NamedParameterSpec paramSpec = new NamedParameterSpec("X25519"); kpg.initialize(paramSpec); // equivalent to kpg.initialize(255) // alternatively: kpg = KeyPairGenerator.getInstance("X25519") KeyPair kp = kpg.generateKeyPair(); KeyFactory kf = KeyFactory.getInstance("XDH"); BigInteger u = ... XECPublicKeySpec pubSpec = new XECPublicKeySpec(paramSpec, u); PublicKey pubKey = kf.generatePublic(pubSpec); KeyAgreement ka = KeyAgreement.getInstance("XDH"); ka.init(kp.getPrivate()); ka.doPhase(pubKey, true); byte[] secret = ka.generateSecret();更新平台API支持Unicode 10.0版本(Unicode 10.0概述:Unicode 10.0 增加了8518 个字符, 总计达到了136,690个字符. 并且增加了4个脚本, 总结139个脚本, 同时还有56个新的emoji表情符号。参考:http://unicode.org/versions/Unicode10.0.0/)。
Unicode是一个不断进化的工业标准,因此必须不断保持Java和Unicode最新版本同步。
提供一个低开销的,为了排错Java应用问题,以及JVM问题的数据收集框架,希望达到的目标如下:
提供用于生产和消费数据作为事件的API;提供缓存机制和二进制数据格式;允许事件配置和事件过滤;提供OS,JVM和JDK库的事件;排错,监控,性能分析是整个开发生命周期必不可少的一部分,但是某些问题只会在大量真实数据压力下才会发生在生产环境。
Flight Recorder记录源自应用程序,JVM和OS的事件。 事件存储在一个文件中,该文件可以附加到错误报告中并由支持工程师进行检查,允许事后分析导致问题的时期内的问题。工具可以使用API从记录文件中提取信息。
实现RFC 7539中指定的 ChaCha20 和 ChaCha20-Poly1305 两种加密算法。
唯一一个其他广泛采用的RC4长期以来一直被认为是不安全的,业界一致认为当下ChaCha20-Poly1305是安全的。
增强Java启动器支持运行单个Java源代码文件的程序。
单文件程序是指整个程序只有一个源码文件,通常是早期学习Java阶段,或者写一个小型工具类。以HelloWorld.java为例,运行它之前需要先编译。我们希望Java启动器能直接运行这个源码级的程序:
java HelloWorld.java等价于:
javac -d <memory> HelloWorld.java java -cp <memory> helloWorld java Factorial.java 3 4 5等价于:
javac -d <memory> Factorial.java java -cp <memory> Factorial 3 4 5到JDK10为止,Java启动器能以三种方式运行:
启动一个class文件;启动一个JAR中的main方法类;启动一个模块中的main方法类;JDK11再加一个,即第四种方式:启动一个源文件申明的类。
提供一种低开销的Java堆分配采样方法,得到堆分配的Java对象信息,可通过JVMTI访问。希望达到的目标如下:
足够低的开销,可以默认且一直开启;能通过定义好的程序接口访问;能采样所有分配;能给出生存和死亡的Java对象信息; 动机对用户来说,了解它们堆里的内存是很重要的需求。目前有一些已经开发的工具,允许用户窥探它们的堆,比如:Java Flight Recorder, jmap, YourKit, 以及VisualVM tools.。但是这工具都有一个很大的缺点:无法得到对象的分配位置。headp dump以及heap histo都没有这个信息,但是这个信息对于调试内存问题至关重要。因为它能告诉开发者,他们的代码发生(尤其是坏的)分配的确切位置。
实现TLS协议1.3版本。(TLS允许客户端和服务端通过互联网以一种防止窃听,篡改以及消息伪造的方式进行通信)。
TLS 1.3是TLS协议的重大改进,与以前的版本相比,它提供了显着的安全性和性能改进。其他供应商的几个早期实现已经可用。我们需要支持TLS 1.3以保持竞争力并与最新标准保持同步。这个特性的实现动机和Unicode 10一样,也是紧跟历史潮流。
ZGC:这应该是JDK11最为瞩目的特性,没有之一。但是后面带了Experimental,说明还不建议用到生产环境。看看官方对这个特性的目标描述:
GC暂停时间不会超过10ms;即能处理几百兆小堆,也能处理几个T的大堆(OMG);和G1相比,应用吞吐能力不会下降超过15%;为未来的GC功能和利用colord指针以及Load barriers优化奠定基础;初始只支持64位系统;GC是Java主要优势之一。然而,当GC停顿太长,就会开始影响应用的响应时间。消除或者减少GC停顿时长,Java将对更广泛的应用场景是一个更有吸引力的平台。此外,现代系统中可用内存不断增长, 用户和程序员希望JVM能够以高效的方式充分利用这些内存,并且无需长时间的GC暂停时间。 ZGC一个并发,基于region,压缩型的垃圾收集器,只有root扫描阶段会STW,因此GC停顿时间不会随着堆的增长和存活对象的增长而变长。 ZGC和G1停顿时间比较:
ZGC avg: 1.091ms (+/-0.215ms) 95th percentile: 1.380ms 99th percentile: 1.512ms 99.9th percentile: 1.663ms 99.99th percentile: 1.681ms max: 1.681ms G1 avg: 156.806ms (+/-71.126ms) 95th percentile: 316.672ms 99th percentile: 428.095ms 99.9th percentile: 543.846ms 99.99th percentile: 543.846ms max: 543.846ms用法:
-XX:+UnlockExperimentalVMOptions -XX:+UseZGC因为ZGC还处于实验阶段,所以需要通过JVM参数UnlockExperimentalVMOptions 来解锁这个特性。
参考:http://openjdk.java.net/projects/jdk/11/
https://www.jianshu.com/p/ae60abb6752d