keras实现类似 VGG 的卷积神经网络

    xiaoxiao2022-07-03  125

    import numpy as np import keras from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten from keras.layers import Conv2D,MaxPool2D from keras.optimizers import SGD #生成虚拟数据 #训练集100个100*100,3维的数据,标签为100个范围0~9的1维数据 #同理可得测试数据 x_train = np.random.randn((100,100,100,3)) y_train = keras.utils.to_categorical(np.random.randint(10,size=(100,1)),num_classes=10) x_test = np.random.random((20, 100, 100, 3)) y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10) #构造序列模型 model = Sequential() model.add(Conv2D(32,(3,3),activation='relu',input_shape=(100,100,3))) model.add(Conv2D(32,(3,3),activation='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(64,(3,3),activation='relu')) model.add(Conv2D(64,(3,3),activation='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) #Flatten将3维向量拉升维1维 #全连接层的Dropout的ratio要比卷积层的要大些?? model.add(Flatten()) model.add(Dense(256,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10,activation='softmax')) #训练参数配置 sgd=SGD(lr=0.01,decay=1e-6,momentum=0.9,nesterov=True) model.compile(loss='categorical_crossentropy',optimizer=sgd) #训练 model.fit(x_train,y_train,batch_size=31,epochs=10) #评估模型 score = model.evaluate(x_test,y_test,batch_size=32)
    最新回复(0)