反向传播算法(过程及公式推导)

    xiaoxiao2022-07-04  100

    反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是: (1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程; (2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层; (3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。         反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。

    1. 变量定义

            上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。如图,先定义一些变量:         表示第层的第个神经元连接到第层的第个神经元的权重;         表示第层的第个神经元的偏置;         表示第层的第个神经元的输入,即:         表示第层的第个神经元的输出,即:         其中表示激活函数。

    如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。

    2. 代价函数

            代价函数被用来计算ANN输出值与实际值之间的误差。常用的代价函数是二次代价函数(Quadratic cost function):         其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。

    3. 公式及其推导

            本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。         首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:         本文将以一个输入样本为例进行说明,此时代价函数表示为: 公式1(计算最后一层神经网络产生的错误):         其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。 公式1的推导过程如下: 公式2(由后往前,计算每一层神经网络产生的错误):         推导过程: 公式3(计算权重的梯度):         推导过程: 公式4(计算偏置的梯度):         推导过程:

    4. 反向传播算法伪代码

    输入训练集 对于训练集中的每个样本x,设置输入层(Input layer)对应的激活值: 前向传播: ,  计算输出层产生的错误: 反向传播错误: 使用梯度下降(gradient descent),训练参数:                        
    最新回复(0)