1059 Prime Factors (25 分)
Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1k1×p2k2×⋯×pmkm.
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N = p1^k1*p2^k2*…*pm^km, where pi's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi, ki is 1 and must NOT be printed out.
97532468
Sample Output:
97532468=2^2*11*17*101*1291
#include<bits/stdc++.h>
using namespace std;
int prime[1000000];
bool p[1000000] = { false };
int pnum = 0;
void eulersieve(int n) {
for (int i = 2; i <= n; i++) {
if (p[i] == false)prime[pnum++] = i;
for (int j = 0; j < pnum; j++) {
if (prime[j] * i > n)break;
p[prime[j] * i] = true;
if (i%prime[j] == 0)break;
}
}
}
int main() {
int n;
cin >> n;
if (n == 1) {
cout << "1=1"; //数字为1的时候
return 0;
}
int l =n;
int m = (int)sqrt(n*1.0);
eulersieve(m);
cout << n << "=";
int k = 0;
/*for (int j = 0; j < pnum; j++)
cout << prime[j] << " ";*/
bool num = false; //如果这个数本身是质数,则输出 n = n
while (n > 1 && k < pnum) {
int pr = prime[k++];
int c = 0;
while (n%pr == 0) {
c++; n /= pr;
num = true;
}
if (c > 1 && n > 1)printf("%d^%d*", pr, c);
else if (c > 1 && n == 1)printf("%d^%d", pr, c);
else if (c == 1 && n>1)printf("%d*", pr);
else if (c == 1 && n == 1)printf("%d", pr);
}
if (!num)cout << l;
return 0;
}