Python中的dot * multiply的区别

    xiaoxiao2022-07-04  193

    Python中的几种矩阵乘法

    同线性代数中矩阵乘法的定义: np.dot()

    np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积。见如下Python代码:

    import numpy as np

    2-D array: 2 x 3

    two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])

    2-D array: 3 x 2

    two_dim_matrix_two = np.array([[1, 2], [3, 4], [5, 6]])

    two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two) print(‘two_multi_res: %s’ %(two_multi_res))

    1-D array

    one_dim_vec_one = np.array([1, 2, 3]) one_dim_vec_two = np.array([4, 5, 6]) one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two) print(‘one_result_res: %s’ %(one_result_res))

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    结果如下:

    two_multi_res: [[22 28] [49 64]] one_result_res: 32

    1 2 3 对应元素相乘 element-wise product: np.multiply(), 或 *

    在Python中,实现对应元素相乘,有2种方式,一个是np.multiply(),另外一个是*。见如下Python代码:

    import numpy as np

    2-D array: 2 x 3

    two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]]) another_two_dim_matrix_one = np.array([[7, 8, 9], [4, 7, 1]])

    对应元素相乘 element-wise product

    element_wise = two_dim_matrix_one * another_two_dim_matrix_one print(‘element wise product: %s’ %(element_wise))

    对应元素相乘 element-wise product

    element_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one) print(‘element wise product: %s’ % (element_wise_2))

    1 2 3 4 5 6 7 8 9 10 11 12 13

    结果如下:

    element wise product: [[ 7 16 27] [16 35 6]] element wise product: [[ 7 16 27] [16 35 6]]

    最新回复(0)