Spark 中一个很重要的能力是将数据持久化(或称为缓存),在多个操作间都可以访问这些持久化的数据。当持久化一个 RDD 时,每个节点的其它分区都可以使用 RDD 在内存中进行计算,在该数据上的其他 action 操作将直接使用内存中的数据。这样会让以后的 action 操作计算速度加快(通常运行速度会加速 10 倍)。缓存是迭代算法和快速的交互式使用的重要工具。
RDD 可以使用 persist() 方法或 cache() 方法进行持久化。数据将会在第一次 action 操作时进行计算,并缓存在节点的内存中。Spark 的缓存具有容错机制,如果一个缓存的 RDD 的某个分区丢失了,Spark 将按照原来的计算过程,自动重新计算并进行缓存。
另外,每个持久化的 RDD 可以使用不同的存储级别进行缓存,例如,持久化到磁盘、已序列化的 Java 对象形式持久化到内存(可以节省空间)、跨节点间复制、以 off-heap 的方式存储在 Tachyon。这些存储级别通过传递一个 StorageLevel 对象(Scala、Java、Python)给 persist() 方法进行设置。cache() 方法是使用默认存储级别的快捷设置方法,默认的存储级别是 StorageLevel.MEMORY_ONLY(将反序列化的对象存储到内存中)。详细的存储级别介绍如下 :
MEMORY_ONLY : 将 RDD 以反序列化 Java 对象的形式存储在 JVM 中。如果内存空间不够,部分数据分区将不再缓存,在每次需要用到这些数据时重新进行计算。这是默认的级别。MEMORY_AND_DISK : 将 RDD 以反序列化 Java 对象的形式存储在 JVM 中。如果内存空间不够,将未缓存的数据分区存储到磁盘,在需要使用这些分区时从磁盘读取。MEMORY_ONLY_SER : 将 RDD 以序列化的 Java 对象的形式进行存储(每个分区为一个 byte 数组)。这种方式会比反序列化对象的方式节省很多空间,尤其是在使用 fast serializer时会节省更多的空间,但是在读取时会增加 CPU 的计算负担。MEMORY_AND_DISK_SER : 类似于 MEMORY_ONLY_SER ,但是溢出的分区会存储到磁盘,而不是在用到它们时重新计算。DISK_ONLY : 只在磁盘上缓存 RDD。MEMORY_ONLY_2,MEMORY_AND_DISK_2,等等 : 与上面的级别功能相同,只不过每个分区在集群中两个节点上建立副本。OFF_HEAP(实验中): 类似于 MEMORY_ONLY_SER ,但是将数据存储在 off-heap memory,这需要启动 off-heap 内存。注意,在 Python 中,缓存的对象总是使用 Pickle 进行序列化,所以在 Python 中不关心你选择的是哪一种序列化级别。python 中的存储级别包括 MEMORY_ONLY,MEMORY_ONLY_2,MEMORY_AND_DISK,MEMORY_AND_DISK_2,DISK_ONLY 和 DISK_ONLY_2 。
在 shuffle 操作中(例如 reduceByKey),即便是用户没有调用 persist 方法,Spark 也会自动缓存部分中间数据。这么做的目的是,在 shuffle 的过程中某个节点运行失败时,不需要重新计算所有的输入数据。如果用户想多次使用某个 RDD,强烈推荐在该 RDD 上调用 persist 方法。
Spark 的存储级别的选择,核心问题是在内存使用率和 CPU 效率之间进行权衡。建议按下面的过程进行存储级别的选择 :
如果使用默认的存储级别(MEMORY_ONLY),存储在内存中的 RDD 没有发生溢出,那么就选择默认的存储级别。默认存储级别可以最大程度的提高 CPU 的效率,可以使在 RDD 上的操作以最快的速度运行。如果内存不能全部存储 RDD,那么使用 MEMORY_ONLY_SER,并挑选一个快速序列化库将对象序列化,以节省内存空间。使用这种存储级别,计算速度仍然很快。除了在计算该数据集的代价特别高,或者在需要过滤大量数据的情况下,尽量不要将溢出的数据存储到磁盘。因为,重新计算这个数据分区的耗时与从磁盘读取这些数据的耗时差不多。如果想快速还原故障,建议使用多副本存储级别(例如,使用 Spark 作为 web 应用的后台服务,在服务出故障时需要快速恢复的场景下)。所有的存储级别都通过重新计算丢失的数据的方式,提供了完全容错机制。但是多副本级别在发生数据丢失时,不需要重新计算对应的数据库,可以让任务继续运行。转自http://cwiki.apachecn.org/pages/viewpage.action?pageId=2886212