插入numpy二维以及三维的方法

    xiaoxiao2022-07-05  172

    1. np.c_[]  

    >>> np.c_[np.array([1,2,3]), np.array([4,5,6])] array([[1, 4], [2, 5], [3, 6]]) >>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])] array([[1, 2, 3, 0, 0, 4, 5, 6]])

    2. np.r_[]

    >>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])] array([1, 2, 3, 0, 0, 4, 5, 6]) >>> np.r_[-1:1:6j, [0]*3, 5, 6] array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ]) String integers specify the axis to concatenate along or the minimum number of dimensions to force entries into. >>> a = np.array([[0, 1, 2], [3, 4, 5]]) >>> np.r_['-1', a, a] # concatenate along last axis array([[0, 1, 2, 0, 1, 2], [3, 4, 5, 3, 4, 5]]) >>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2 array([[1, 2, 3], [4, 5, 6]]) >>> np.r_['0,2,0', [1,2,3], [4,5,6]] array([[1], [2], [3], [4], [5], [6]]) >>> np.r_['1,2,0', [1,2,3], [4,5,6]] array([[1, 4], [2, 5], [3, 6]]) Using 'r' or 'c' as a first string argument creates a matrix. >>> np.r_['r',[1,2,3], [4,5,6]] matrix([[1, 2, 3, 4, 5, 6]])

    3. np.column_stack()

    >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.column_stack((a,b)) array([[1, 2], [2, 3], [3, 4]])

    4. np.vstack()

    >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]]) >>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a,b)) array([[1], [2], [3], [2], [3], [4]])

    5.  np.insert(arr, obj, values, axis=None)

    >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) Difference between sequence and scalars: >>> np.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), ... np.insert(a, [1], [[1],[2],[3]], axis=1)) True >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) 三维插入二维 >>> data_array = np.zeros((3, 5, 6), dtype=np.int) >>> print(data_array) [[[0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0]] [[0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0]] [[0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0]]] >>> np.insert(data_array, 5, 2, axis=1) array([[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2]], [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2]], [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2]]]) 三维切片 >>> data_array[1:,2:,3:] array([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]])

     

    最新回复(0)