使用kibana7.0.0的控制台Dev Tools操作ES数据的基本语法入门示例
因为使用的是本地启动的ES库,所以需要先启动ES,然后启动kibana,直接从官网上下载安装启动即可,说明一点就是需先启动ES,在启动kibana,该部分效果以及添加官方示例数据已在之前一篇文章中写过,此处不再重复。
直接点击Dev Tools,来看基本操作
1,输入:GET /
在右侧将看到和启动完ES后在浏览器输入localhost:9200相同的内容
2,创建索引
输入:
说明:因为7版本之后,ES不再支持一个索引(index)可以创建多个类型(type),所以cmcc/后边不再需要写入类型名称,而是统一使用_create代替即可,同样的,查询操作使用_doc代替即可,右侧看到如下图所示类似形式表示创建成功
3,查看刚才创建的索引
输入:GET cmcc/_doc/1
右侧将显示刚才创建的内容,其中_index是刚才创建的索引名称;_type是类型,7版本统一为_doc;_id为创建时的ID,如果创建索引的时候不设置ID,那么ES将默认分配一个ID,不过样式会比较长,不好记忆;_version为版本号,如果我们之后对该数据进行了修改,那么他会随之变化;_source里边就是我们刚才加进去的数据内容
4,删除索引
输入:DELETE cmcc
只需要在DELETE后边加上索引名称即可
5,修改数据
输入:
这里我们修改了"name"值,把"province"和"conutry"值改为中文,并添加了一个新属性"xingbie",执行之后我们再次执行获取数据内容命令GET cmcc/_doc/1,如下,可以看到数据已经被修改,版本号变成了2
6,bulk方法批量插入数据
输入:
使用POST方法,然后每一条数据的格式是一致的,首先第一行输入 {"index":{"_index":"cmcc"}} ,也就是索引名称,第二行输入要插入的完整数据,这里特别提醒下,插入的这条数据不能使用刚才创建数据时的那种多行形式,只能使用没有回车的一条数据,否则会报错如下:
{ "error": { "root_cause": [ { "type": "json_e_o_f_exception", "reason": "Unexpected end-of-input: expected close marker for Object (start marker at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@154857fc; line: 1, column: 1])\n at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@154857fc; line: 1, column: 3]" } ], "type": "json_e_o_f_exception", "reason": "Unexpected end-of-input: expected close marker for Object (start marker at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@154857fc; line: 1, column: 1])\n at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@154857fc; line: 1, column: 3]" }, "status": 500 }执行完毕后,我们再次获取数据看一下,输入:GET cmcc/_search
结果如下:(不截长图了,就直接贴结果吧>_<)
{ "took" : 374, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 5, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "cmcc", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "name" : "dunkking", "age" : 27, "location" : "SG", "province" : "河北", "country" : "中国", "xingbie" : "mela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "9vD-3moBmjOHTfOJtVLL", "_score" : 1.0, "_source" : { "name" : "points", "age" : 23, "location" : "PG", "province" : "江苏", "country" : "中国", "xingbie" : "mela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "9_D-3moBmjOHTfOJtVLL", "_score" : 1.0, "_source" : { "name" : "rebound", "age" : 24, "location" : "SF", "province" : "广州", "country" : "中国", "xingbie" : "mela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "-PD-3moBmjOHTfOJtVLL", "_score" : 1.0, "_source" : { "name" : "center", "age" : 23, "location" : "C", "province" : "北京", "country" : "中国", "xingbie" : "femela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "-fD-3moBmjOHTfOJtVLL", "_score" : 1.0, "_source" : { "name" : "assist", "age" : 21, "location" : "PF", "province" : "广州", "country" : "中国", "xingbie" : "famela" } } ] } }7,按照条件查询
输入:
也就是查询数据中属性"province"为"广州"的数据,结果如下:
{ "took" : 10, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.7509375, "hits" : [ { "_index" : "cmcc", "_type" : "_doc", "_id" : "9_D-3moBmjOHTfOJtVLL", "_score" : 1.7509375, "_source" : { "name" : "rebound", "age" : 24, "location" : "SF", "province" : "广州", "country" : "中国", "xingbie" : "mela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "-fD-3moBmjOHTfOJtVLL", "_score" : 1.7509375, "_source" : { "name" : "assist", "age" : 21, "location" : "PF", "province" : "广州", "country" : "中国", "xingbie" : "famela" } } ] } }8,当同一个属性满足逻辑或时的查询
输入:
这里是查询属性"age"等于21或者23的数据,如果看着不舒服,我们可以点击运行按钮右侧的扳手,选择Auto indent,输入效果就会直观一些,
其中,116行固定输入"query",117行固定输入"bool",118行输入为"should",表示是逻辑或的关系,120行为"match",121行为所要查询的属性名与属性值
执行结果如下
{ "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "cmcc", "_type" : "_doc", "_id" : "9vD-3moBmjOHTfOJtVLL", "_score" : 1.0, "_source" : { "name" : "points", "age" : 23, "location" : "PG", "province" : "江苏", "country" : "中国", "xingbie" : "mela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "-PD-3moBmjOHTfOJtVLL", "_score" : 1.0, "_source" : { "name" : "center", "age" : 23, "location" : "C", "province" : "北京", "country" : "中国", "xingbie" : "femela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "-fD-3moBmjOHTfOJtVLL", "_score" : 1.0, "_source" : { "name" : "assist", "age" : 21, "location" : "PF", "province" : "广州", "country" : "中国", "xingbie" : "famela" } } ] } }9,多条件查询
输入:
这里是查询属性"age"等于23,并且属性"country"为“中国”的数据,这里和上一条查询的关键区别就在于第98行由"should"改为"must",执行结果如下:
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.1740228, "hits" : [ { "_index" : "cmcc", "_type" : "_doc", "_id" : "9vD-3moBmjOHTfOJtVLL", "_score" : 1.1740228, "_source" : { "name" : "points", "age" : 23, "location" : "PG", "province" : "江苏", "country" : "中国", "xingbie" : "mela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "-PD-3moBmjOHTfOJtVLL", "_score" : 1.1740228, "_source" : { "name" : "center", "age" : 23, "location" : "C", "province" : "北京", "country" : "中国", "xingbie" : "femela" } } ] } }10,范围查询并进行排序
输入:
这里,151行使用"range",152行输入属性名,153行"gte"和154行"lte"表示查询属性"age"在20-25范围的数据,然后158行表示排序,160行表示排序的属性是"age",161“order”表示排序为倒序"desc",执行结果如下:
{ "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 4, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "cmcc", "_type" : "_doc", "_id" : "9_D-3moBmjOHTfOJtVLL", "_score" : null, "_source" : { "name" : "rebound", "age" : 24, "location" : "SF", "province" : "广州", "country" : "中国", "xingbie" : "mela" }, "sort" : [ 24 ] }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "9vD-3moBmjOHTfOJtVLL", "_score" : null, "_source" : { "name" : "points", "age" : 23, "location" : "PG", "province" : "江苏", "country" : "中国", "xingbie" : "mela" }, "sort" : [ 23 ] }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "-PD-3moBmjOHTfOJtVLL", "_score" : null, "_source" : { "name" : "center", "age" : 23, "location" : "C", "province" : "北京", "country" : "中国", "xingbie" : "femela" }, "sort" : [ 23 ] }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "-fD-3moBmjOHTfOJtVLL", "_score" : null, "_source" : { "name" : "assist", "age" : 21, "location" : "PF", "province" : "广州", "country" : "中国", "xingbie" : "famela" }, "sort" : [ 21 ] } ] } }11,聚合查询
输入:
使用聚合查询,格式是:170行使用"aggs",171行为所要查询的属性名,这里查询"age",173行"field"后边输入属性名,174行为范围,分别在"from"和"to"后边输入要分段的范围,这条请求实现的是统计属性"age"按照20-23,23-25,25-30划分的数据条数分别为多少,如果想要查看满足条件的数据,则将169行"size"值置为非零数,貌似应大于查询条数,具体还没查,这里是不显示满足条件的具体数据,直接置零即可,执行结果如下:
{ "took" : 9, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 5, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "age" : { "buckets" : [ { "key" : "20.0-23.0", "from" : 20.0, "to" : 23.0, "doc_count" : 1 }, { "key" : "23.0-25.0", "from" : 23.0, "to" : 25.0, "doc_count" : 3 }, { "key" : "25.0-30.0", "from" : 25.0, "to" : 30.0, "doc_count" : 1 } ] } } }聚合查询的另外一个示例
输入:
这条请求是查询属性"province"的统计结果,这里是统计5条数据,并显示其中2条,并在197行"field"后输入属性名,并在其后添加 .keyword,查询结果如下
{ "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 5, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "cmcc", "_type" : "_doc", "_id" : "1", "_score" : 1.0, "_source" : { "name" : "dunkking", "age" : 27, "location" : "SG", "province" : "河北", "country" : "中国", "xingbie" : "mela" } }, { "_index" : "cmcc", "_type" : "_doc", "_id" : "9vD-3moBmjOHTfOJtVLL", "_score" : 1.0, "_source" : { "name" : "points", "age" : 23, "location" : "PG", "province" : "江苏", "country" : "中国", "xingbie" : "mela" } } ] }, "aggregations" : { "province" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : "广州", "doc_count" : 2 }, { "key" : "北京", "doc_count" : 1 }, { "key" : "江苏", "doc_count" : 1 }, { "key" : "河北", "doc_count" : 1 } ] } } }暂时写这么多,刚开始学,很多不熟悉的,后续有时间慢慢补充