POJ - 3624Charm Bracelet(01背包)

    xiaoxiao2022-07-07  184

    Charm Bracelet

    Descriptions:

    Bessie has gone to the mall’s jewelry store and spies a charm bracelet. Of course, she’d like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a ‘desirability’ factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880). Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

    Input

    Line 1: Two space-separated integers: N and MLines 2…N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

    Output

    Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

    Sample Input

    4 6 1 4 2 6 3 12 2 7

    Sample Output

    23

    题目链接: https://vjudge.net/problem/POJ-3624

    题解:

    先简单翻译一下(可能都被英文整懵了,就说一下大概意思,中间部分物品简化了,不影响做题) 已知n个糖果的重量和价值. 我们有一个口袋, 最多可以装m重量的糖果. 问口袋最多能放多少价值的糖果进去? 输入: 第1行:两个以空格分隔的整数:n和m 第2行:N 1:第i 1行描述具有两个以空格分隔的整数的魅力i:Wi和Di ,即重量和价值 输出:第1行:单个整数即在重量限制的情况下,可以实现的最大可取性 开始题解了哈 标准的01背包问题,非常经典,没有任何坑,用数组记录每一件物品的重量w[i],价值v[i],背包各个重量的最优解dp[j],从第一个物品到最后一个物品,背包空间初始为M(题目给定的值),放入第i件物品,空间减少w[i],价值增加v[i],不断更新直到背包空间为0。 状态更新公式:dp[j]=max(dp[j],dp[j-w[i]]+v[i]

    AC代码

    #include <iostream> #include <cstdio> #include <fstream> #include <algorithm> #include <cmath> #include <deque> #include <vector> #include <queue> #include <string> #include <cstring> #include <map> #include <stack> #include <set> #include <sstream> using namespace std; int n,m; int v[13000];//价值 int w[13000];//重量 int dp[13000]; int main() { memset(dp,0,sizeof(dp));//初始化都为0 cin >> n >> m; for(int i=0; i<n; i++) cin >> w[i] >> v[i]; for(int i=0; i<=n; i++)//从第0到第n-1件物品 { for(int j=m; j>=w[i]; j--)//dp更新中,保证j-w[i]必须大于0,即背包空间一直大于0 dp[j]=max(dp[j],dp[j-w[i]]+v[i]); } cout << dp[m]; return 0; }
    最新回复(0)