波士顿房价预测模型学习整理GridSearchCV

    xiaoxiao2022-07-07  207

    coding: utf-8

    import numpy as np import pandas as pd

    #读取数据,预处理

    data = pd.read_csv('housing.csv') prices = data['MEDV'] features = data.drop('MEDV', axis = 1)

    #观察数据特征 #目标:计算价值的最小值

    minimum_price = np.min(prices)

    #目标:计算价值的最大值

    maximum_price = np.max(prices)

    #目标:计算价值的平均值

    mean_price = np.mean(prices)

    #目标:计算价值的中值

    median_price = np.median(prices)

    #目标:计算价值的标准差

    std_price = np.std(prices)

    #目标:输出计算的结果

    print("Statistics for Boston housing dataset:\n") print("Minimum price: ${:,.2f}".format(minimum_price)) print("Maximum price: ${:,.2f}".format(maximum_price)) print("Mean price: ${:,.2f}".format(mean_price)) print("Median price ${:,.2f}".format(median_price)) print("Standard deviation of prices: ${:,.2f}".format(std_price))

    #通过散点图各个特征和标签之间的关系

    import matplotlib.pyplot as plt rm = data['RM'] medv = data['MEDV'] plt.scatter(rm, medv, c='b') plt.show() lstat = data['LSTAT'] plt.scatter(lstat, medv, c='c') plt.show() ptratio = data['PTRATIO'] plt.scatter(ptratio, medv, c='g') plt.show()

    #确定预测评分模型,选用R2方法

    from sklearn.metrics import r2_score def performance_metric(y_true, y_predict): """计算并返回预测值相比于预测值的分数""" score = r2_score(y_true, y_predict, sample_weight=None, multioutput=None) return score

    #建立预测模型,通过GridSearchCV找到最有决策树模型

    from sklearn.model_selection import KFold from sklearn.metrics import make_scorer from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import GridSearchCV def fit_model(X, y): """ 基于输入数据 [X,y],利于网格搜索找到最优的决策树模型""" cross_validator = KFold(n_splits=10, shuffle=False, random_state=None) regressor = DecisionTreeRegressor() params = {'max_depth':[1,2,3,4,5,6,7,8,9,10]} scoring_fnc = make_scorer(performance_metric) grid = GridSearchCV(estimator=regressor, param_grid=params, scoring=scoring_fnc, cv=cross_validator) # 基于输入数据 [X,y],进行网格搜索

    grid = grid.fit(X, y) # 返回网格搜索后的最优模型 return grid.best_estimator_

    #拆分数据集,训练集合测试集,选用train_test_split

    from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size=0.20, random_state=0) print("Train test split success!")

    基于训练数据,获得最优模型

    optimal_reg = fit_model(X_train, y_train)

    输出最优模型的 ‘max_depth’ 参数

    print("Parameter 'max_depth' is {} for the optimal model.".format(optimal_reg.get_params()['max_depth']))

    生成三个客户的数据,预测对应价格

    client_data = [[5, 17, 15], # 客户 1 [4, 32, 22], # 客户 2 [8, 3, 12]] # 客户 3

    # 进行预测

    predicted_price = optimal_reg.predict(client_data) print(predicted_price) for i, price in enumerate(predicted_price): print("Predicted selling price for Client {}'s home: ${:,.2f}".format(i+1, price))
    最新回复(0)