Matlab中神经网络的学习

    xiaoxiao2022-07-07  218

    由于笔者论文的需要,总结一些神经网络算法在matlab中的专有名词。

    一、训练函数

    1、traingd

    Name:Gradient descent backpropagation (梯度下降反向传播算法 )

    Description:triangd is a network training function that updates weight and bias values according to gradient descent.

    2、traingda

    Name:Gradient descent with adaptive learning rate backpropagation(自适应学习率的t梯度下降反向传播算法)

    Description:triangd is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate. it will return a trained net (net) and the trianing record (tr).

    3、traingdx (newelm函数默认的训练函数)

    name:Gradient descent with momentum and adaptive learning rate backpropagation(带动量的梯度下降的自适应学习率的反向传播算法)

    Description:triangdx is a network training function that updates weight and bias values according to gradient descent momentum and an adaptive learning rate it will return a trained net (net) and the trianing record (tr).

    4、trainlm

    Name:Levenberg-Marquardt backpropagation (L-M反向传播算法)

    Description:triangd is a network training function that updates weight and bias values according toLevenberg-Marquardt optimization. it will return a trained net (net) and the trianing record (tr).

    注:更多的训练算法请用matlab的help命令查看。

    二、学习函数

    1、learngd

    Name:Gradient descent weight and bias learning function (梯度下降的权值和阈值学习函数)

    Description:learngd is the gradient descent weight and bias learning function, it will return the weight change dW and a new learning state.

    2、learngdm

    Name:Gradient descent with momentum weight and bias learning function (带动量的梯度下降的权值和阈值学习函数)

    Description:learngd is the gradient descent with momentum weight and bias learning function, it will return the weight change dW and a new learning state.

    注:更多的学习函数用matlab的help命令查看。

    三、训练函数与学习函数的区别

    学习函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。 或者这么说:训练函数是全局调整权值和阈值,考虑的是整体误差的最小。学习函数是局部调整权值和阈值,考虑的是单个神经元误差的最小[1]。

    最新回复(0)