分类 C_SVC=100: C-Support Vector Classification. n-class classification (n ≥ \geq ≥ 2), allows imperfect separation of classes with penalty multiplier C for outliers.
NU_SVC=101: ν \nu ν-Support Vector Classification. n-class classification with possible imperfect separation. Parameter ν \nu ν (in the range 0…1, the larger the value, the smoother the decision boundary) is used instead of C.
单类界限 ONE_CLASS=102: Distribution Estimation (One-class %SVM). All the training data are from the same class, %SVM builds a boundary that separates the class from the rest of the feature space.
回归 EPS_SVR=103: ϵ \epsilon ϵ-Support Vector Regression. The distance between feature vectors from the training set and the fitting hyper-plane must be less than p. For outliers the penalty multiplier C is used.
NU_SVR=104: ν \nu ν-Support Vector Regression. ν \nu ν is used instead of p.
CUSTOM=-1: Returned by SVM::getKernelType in case when custom kernel has been set
LINEAR=0: Linear kernel. No mapping is done, linear discrimination (or regression) is done in the original feature space. It is the fastest option. K ( x i , x j ) = x i T x j K(x_i, x_j) = x_i^T x_j K(xi,xj)=xiTxj.
POLY=1: Polynomial kernel: K ( x i , x j ) = ( γ x i T x j + c o e f 0 ) d e g r e e , γ > 0 K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0 K(xi,xj)=(γxiTxj+coef0)degree,γ>0.
RBF=2: Radial basis function (RBF), a good choice in most cases. K ( x i , x j ) = e − γ ∣ ∣ x i − x j ∣ ∣ 2 , γ > 0 K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0 K(xi,xj)=e−γ∣∣xi−xj∣∣2,γ>0.
SIGMOID=3: Sigmoid kernel: K ( x i , x j ) = tanh ( γ x i T x j + c o e f 0 ) K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0) K(xi,xj)=tanh(γxiTxj+coef0).
CHI2=4: Exponential Chi2 kernel, similar to the RBF kernel: K ( x i , x j ) = e − γ χ 2 ( x i , x j ) , χ 2 ( x i , x j ) = ( x i − x j ) 2 / ( x i + x j ) , γ > 0 K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0 K(xi,xj)=e−γχ2(xi,xj),χ2(xi,xj)=(xi−xj)2/(xi+xj),γ>0.
INTER=5: Histogram intersection kernel. A fast kernel. K ( x i , x j ) = m i n ( x i , x j ) K(x_i, x_j) = min(x_i,x_j) K(xi,xj)=min(xi,xj).
KernelType参数:
GAMMA=1,COEF=4,DEGREE=5SVM Types参数:
C=0: 取值为 ( 0 , + ∞ ) (0,+\infty) (0,+∞)?,数值越大,软间隔越小P=2, 取值为 ( 0 , 1 ) (0,1) (0,1)?,数值越大,软间隔越大NU=3: 取值为 ( 0 , 1 ) (0,1) (0,1),数值越大,软间隔越大