gensim fasttext

    xiaoxiao2022-07-07  179

    from nltk import word_tokenize,WordNetLemmatizer import pandas as pd from nltk.corpus import stopwords import re from gensim import corpora import gensim from gensim.models import word2vec,fasttext from sklearn.feature_extraction.text import TfidfVectorizer stoplist = stopwords.words('english') data_train=pd.read_csv(r'D:\Kaggle\train.tsv',sep='\t') def clean(data): all_word = [] for i in data: i = re.sub('[^a-zA-Z]',' ',i) word_list = word_tokenize(i) word_result = [i for i in word_list if i not in stoplist] if word_result !=[]: all_word.append(word_result) return all_word all_word = clean(data_train.Phrase.values) # model = word2vec.Word2Vec(all_word,min_count=1,iter=20) # model.save("word2vec.model") #保存模型 # print(model.wv['right']) #寻找词向量 model1 = fasttext.FastText(all_word,size=100,window=5,min_count=5,workers=4,word_ngrams=1) #词,嵌入大小,前后文词的个数 model1.save("fast_text.model")

     

    最新回复(0)