ACM 学习总结报告(二十)

    xiaoxiao2022-07-07  201

    并查集

    一.并查集的基本思想 1、什么叫并查集   并查集(union-find set)是一种用于分离集合操作的抽象数据类型。它所处理的是“集合”之间的关系,即动态地维护和处理集合元素之间复杂的关系,当给出两个元素的一个无序对(a,b)时,需要快速“合并”a和b分别所在的集合,这其间需要反复“查找”某元素所在的集合。“并”、“查”和“集”三字由此而来。在这种数据类型中,n个不同的元素被分为若干组。每组是一个集合,这种集合叫做分离集合(disjoint set)。并查集支持查找一个元素所属的集合以及两个元素各自所属的集合的合并。 例如,有这样的问题:初始时n个元素分属不同的n个集合,通过不断的给出元素间的联系,要求实时的统计元素间的关系(是否存在直接或间接的联系)。这时就有了并查集的用武之地了。元素间是否有联系,只要判断两个元素是否属于同一个集合;而给出元素间的联系,建立这种联系,则只需合并两个元素各自所属的集合。这些操作都是并查集所提供的。   并查集本身不具有结构,必须借助一定的数据结构以得到支持和实现。数据结构的选择是一个重要的环节,选择不同的数据结构可能会在查找和合并的操作效率上有很大的差别,但操作实现都比较简单高效。并查集的数据结构实现方法很多,数组实现、链表实现和树实现。一般用的比较多的是数组实现。 2、并查集支持的操作 并查集的数据结构记录了一组分离的动态集合S={S1,S2,…,Sk}。每个集合通过一个代表加以识别,代表即该元素中的某个元素,哪一个成员被选做代表是无所谓的,重要的是:如果求某一动态集合的代表两次,且在两次请求间不修改集合,则两次得到的答案应该是相同的。 动态集合中的每一元素是由一个对象来表示的,设x表示一个对象,并查集的实现需要支持如下操作:   MAKE(x):建立一个新的集合,其仅有的成员(同时就是代表)是x。由于各集合是分离的,要求x没有在其它集合中出现过。   UNIONN(x,y):将包含x和y的动态集合(例如Sx和Sy)合并为一个新的集合,假定在此操作前这两个集合是分离的。结果的集合代表是Sx∪Sy的某个成员。一般来说,在不同的实现中通常都以Sx或者Sy的代表作为新集合的代表。此后,由新的集合S代替了原来的Sx和Sy。 FIND(x):返回一个指向包含x的集合的代表。 2.并查集的基本思想 【程序清单】 (1)初始化:  for (i = 1; i <= n; i++) father[i] = i;  因为每个元素属于单独的一个集合,所以每个元素以自己作为根结点。 (2)寻找根结点编号并压缩路径:   int find (int x)   {    if (father[x] != x) father[x] = find (father[x]);    return father[x];   }

    (3)合并两个集合: void unionn(int x,int y) {   x = find(x);y = find(y);   father[y] = x; }

    (4)判断元素是否属于同一集合: bool judge(int x,int y) { x = find(x); y = find(y); if (x == y) return true; else return false; } 这个的引题已经完全阐述了并查集的基本操作和作用。 优化的具体程序如下:

      #include<iostream>   #include<cstdio>   using namespace std;   #define maxn 20001   int father[maxn];   int m,n,i,x,y,q;   /*   int find(int x) //用非递归的实现   {    while (father[x] != x) x= father[x];    return x;   }   */   int find(int x) //用递归的实现   {    if (father[x] != x) father[x] = find(father[x]); //路径压缩    return father[x];   }   void unionn(int r1,int r2)   {    father[r2] = r1;   } int main()   {    freopen("relation.in","r",stdin);    freopen("relation.out","w",stdout);    cin >> n >> m;    for (i = 1; i <= n; i++)    father[i] = i; //建立新的集合,其仅有的成员是i    for (i = 1; i <= m; i++)    {    scanf("%d%d",&x,&y);    int r1 = find(x);    int r2 = find(y);    if (r1 != r2) unionn(r1,r2);    }    cin >> q;    for (i = 1; i <= q; i++)    {    scanf("%d%d",&x,&y);;    if (find(x) == find(y)) printf("Yes\n");    else printf("No\n");    }    return 0;   }

    这种做法就可能不会超时了。

    最新回复(0)