https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=2247486719&idx=1&sn=061fd69d867ef292e66ce80ed58a9c33&chksm=ec1fe106db6868100c2a333c6e121ce04c862c867a0cbc2c326a6283edfdc54d9cdb29242576&scene=21#wechat_redirect
https://www.cnblogs.com/zhengyuqian/p/10509763.html CVPR2018 目标检测算法总览(最新的目标检测论文) 1.Cascaded RCNN:caffe 2.Relation Networks for Object Detection :MxNet 3.RefineDet:caffe 4.Scale-Transferrable Object Detection:pytorch 5.Min-Entropy Latent Model for Weakly Supervised Object Detection:torch 6.Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection:pytorch 7.Feature Selective Networks for Object Detection: 8.Deep Reinforcement Learning of Region Proposal Networks for Object Detection:tensorflow 9.Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships:tensorflow 10.DetNet: Design Backbone for Object Detection:pytorch 11.Receptive Field Block Net for Accurate and Fast Object Detection:pytorch
http://bbs.cvmart.net/topics/302/cvpr2019paper#1 CVPR2019 目标检测论文汇总 1.Bi-Directional Cascade Network for Perceptual Edge Detection:pytorch 2.Region Proposal by Guided Anchoring:pytorch 3.Learning Attraction Field Representation for Robust Line Segment Detection:pytorch 4.Latent Space Autoregression for Novelty Detection:Pytorch 5.Bounding Box Regression with Uncertainty for Accurate Object Detection(目标检测边界框回归损失算法):Caffe2 and Detectron 6.Towards Universal Object Detection by Domain Attention: 7.A Simple Pooling-Based Design for Real-Time Salient Object Detection:pytorch 8.CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection:keras,tensorflow 9.ScratchDet:Exploring to Train Single-Shot Object Detectors from Scratch(Oral):可能是pytorch 10.Pyramid Feature Attention Network for Saliency detection:tensorflow,keras 11.PPGNet: Learning Point-Pair Graph for Line Segment Detection:
