数据太大爆内存怎么办?七条解决思路

    xiaoxiao2021-04-15  351

    在研究、应用机器学习算法的经历中,相信大伙儿经常遇到数据集太大、内存不够用的情况。

    这引出一系列问题:

    怎么加载十几、几十 GB 的数据文件?运行数据集的时候算法崩溃了,怎么办?怎么处理内存不足导致的错误?

    本文将讨论一些常用的解决办法,供大家参考。

    处理大型 ML 数据文件的七种思路

    1. 分配更多内存

    有的机器学习工具/库有默认内存设置,比如 Weka。这便是一个限制因素。

    你需要检查一下:是否能重新设置该工具/库,分配更多内存。

    对于 Weka,你可以在打开应用时,把内存当作一个参数进行调整。

    2. 用更小的样本

    你真的需要用到全部数据吗?

    可以采集一个数据的随机样本,比如前 1,000 或 100,000 行。在全部数据上训练最终模型之前(使用渐进式的数据加载技巧),先试着用这个小样本解决问题。

    总的来说,对算法做快速地抽查、看到结果在前后的变化,在机器学习领域是一个很好的习惯。

    你还可以考虑:相对于模型技巧,做一个数据大小的敏感性分析。或许,对于你的随机小样本,有一个天然的边际效应递减分水岭。越过这个关口,继续增加的数据规模带来的好处微乎其微。

    3. 更多内存

    你必须要用 PC 吗?

    你可以考虑内存、性能高一个量级的计算设备。比如,租用 AWS 这样的云服务。租用云端有数十 GB 内存的机器,最低价格每小时不到一美元。我个人觉得这是非常实际的选择。

    4. 转换数据格式

    你是否把数据存为原始的 ASCII 文本,比如 CSV 文件?

    或许,使用其它格式能加速数据载入并且降低内存占用。好的选择包括像 GRIB、NetCDF、HDF 这样的二进制格式。

    有很多命令行工具能帮你转换数据格式,而且不需要把整个数据集载入内存里。

    换一种格式,可能帮助你以更紧凑的形式存储数据,节省内存空间;比如 2-byte 整数,或者 4-byte 浮点。

    5. 流式处理数据,或渐进式的数据加载

    你的所有数据,需要同时出现在内存里吗?

    或许,你可以用代码或库,随时把需要的数据做流式处理或渐进式加载,导入内存里训练模型。

    这可能需要算法使用优化技术迭代学习,比如使用随机梯度下降。那些需要内存里有所有数据、以进行矩阵运算的算法,比如某些对线性回归和逻辑回归的实现,就不适用了。

    比如,Keras 深度学习 API 就提供了渐进式加载图像文件的功能,名为 flow_from_directory

    另一个例子式 Pandas 库,可批量载入大型 CSV 文件。

    6. 使用关系数据库(Relational database)

    关系数据库为存储、访问大型数据集提供了标准化的方法。

    在内部,数据存在硬盘中,能渐进式地 in batch 批量加载,并使用标准检索语言 SQL 检索。

    像 MySQL、Postgres 这样的开源数据库工具,支持绝大多数的(全部?)编程语言。许多机器学习工具,都能直接与关系数据库连通。你也可以用 SQLite 这样更轻量的方法。

    我发现,这种方法对大型表格式数据集非常有效率。

    雷锋网提醒,你需要用能迭代学习的算法。

    7. 使用大数据平台

    有的情况下,你可能必须要使用大数据平台,即为处理超大型数据集而开发的平台。它们能让你进行数据转换,并在其上开发机器学习算法。

    两个很好的例子是 Hadoop 与机器学习库 Mahout,以及 Spark 与 MLLib 库。

    我认为,这是用尽上述办法仍无法解决的情况下,才需要采用的最后手段。单纯是这为你的机器学习项目所带来的额外硬件、软件复杂情况,就会消耗许多精力。

    即便如此,有的任务确实数据太过庞大,前面的选项都无法奏效。

    本文作者:Jason Brownlee

    来源:51CTO

    相关资源:机器学习面临的挑战

    最新回复(0)