基于传统方法点云分割以及PCL中分割模块

    xiaoxiao2022-07-07  160

    之前在微信公众号中更新了以下几个章节 1,如何学习PCL以及一些基础的知识 2,PCL中IO口以及common模块的介绍 3,PCL中常用的两种数据结构KDtree以及Octree树的介绍 前言 三维点云分割是将同属性的点云物体分割出来,以便于单独对该点云物体处理,但是由于点云数据是一种高冗余度,且不均匀的数据结构,所以点云分割具有一定挑战性,

    点云库于(PCL)2011年推出以来,得到行业广泛的应用,该库包含了最先进的3D感知算法,并包含了LIDAR和三维扫描仪的接口,这使得点云库PCL在机器人领域持续不断的发展壮大起来。至今为止已经更新到了1.9.1版本。在图像分割中常常用到前景与背景的分割处理,而在点云处理中,对于给定点云数据,分割的目标是将具有相似特征的点聚类成均匀区域,根据分割结果应用于各个方面的场景分析,一般的方法时根据输入点云的网格构建图形,使用边界线的法线,平滑度或者是凹凸性等信息进行聚类分割,在文章【1】中调查了分割的方法有:凹凸性分割,分水岭分析,层次聚类,区域增长以及频谱聚类。这些方法不仅是应用图像,也广泛的应用于点云数据的分割。

    在计算机视觉中,2D图像的分割是一个很经典的问题,并且已经有着十几年的研究历史,其中基于传统的方法比较流行有Graph Cuts[2],包含了Normalized Cuts和Min Cuts 这些方法的思想同样适应于3D点云的分割,并且这部分内容在PCL中都已经开源。

    点云分割算法应该具有以下三种重要的属性: (1)比如树木是具有与汽车相区别的特征的ÿ

    最新回复(0)