代码实现请参考:https://blog.csdn.net/weixin_41676798/article/details/90521271
所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 kNN算法的核心思想:如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
下图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形? 如果K=3,由于红色三角形所占比例为2/3(因为小实线圈圈出来的3个样本中有2个是红色),绿色圆将被赋予红色三角形那个类; 如果K=5,由于蓝色四方形比例为3/5(因为大虚线圈圈出来的5个样本中有3个是蓝色),因此绿色圆被赋予蓝色四方形类。 由此可知,计算结果很大程度上取决于K值。
K最近邻(k-Nearest Neighbor,KNN)分类算法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。说简单点就是:以一个待定样本为中心,画一个圈使其包含k个已知分类的点(属性相近的距离待定样本的距离短),针对被圈出来的点,计算各类别的占比,占比最大的那个分类,就是待定样本的所属分类。 KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。
优点: 1.简单,易于理解,易于实现,无需估计参数,无需训练; 2. 适合对稀有事件进行分类; 3.特别适合于多分类问题(multi-modal,对象具有多个类别标签), kNN比SVM的表现要好。
缺点: 1.当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。 2.计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。 3.可理解性差,无法给出像决策树那样的规则。
算法改进: 针对以上算法的不足,算法的改进方向主要分成了分类效率和分类效果两方面。 分类效率:事先对样本属性进行约简,删除对分类结果影响较小的属性,快速的得出待分类样本的类别。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。 分类效果:采用权值的方法(和该样本距离小的邻居权值大)来改进,Han等人于2002年尝试利用贪心法,针对文件分类实做可调整权重的k最近邻居法WAkNN (weighted adjusted k nearest neighbor),以促进分类效果;而Li等人于2004年提出由于不同分类的文件本身有数量上有差异,因此也应该依照训练集合中各种分类的文件数量,选取不同数目的最近邻居,来参与分类。
在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离: 对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为: 1)计算测试数据与各个训练数据之间的距离; 2)按照距离的递增关系进行排序; 3)选取距离最小的K个点; 4)确定前K个点所在类别的出现频率; 5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。
部分内容参考自:https://www.cnblogs.com/ybjourney/p/4702562.html 感谢博主,如有侵权,请联系删除。
