如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧(下)

    xiaoxiao2021-04-18  213

    上一篇文章发出来之后,为了掐死我,大家真是很下工夫啊,有拿给姐姐看的,有拿给妹妹看的,还有拿给女朋友看的,就是为了听到一句“完全看不懂啊”。幸亏我留了个心眼,不然就真的像标题配图那样了。我的文章题目是,如果看了这篇文章你“还”不懂就过来掐死我,潜台词就是在你学了,但是没学明白的情况下看了还是不懂,才过来掐死我。

    另外,想跟很多人抱歉,因为评论太多了,时间有限,不能给每个人回复,还望大家谅解。但是很感谢一直在评论区帮忙解答读者问题的各位,就不一一@了。

    这里郑重感谢大连海事大学的吴楠老师,一位学识渊博、备课缜密、但授课不拘一格的年轻教师!当时大三他教我通信原理,但是他先用了4结课帮我们复习了很多信号与系统的基本概念,那个用乐谱代表频域的概念就是他讲的,一下子让我对这门课豁然开朗,才有了今天的这篇文章。

    ————————————今天的定场诗有点长——————————

    下面继续开始我们无节操的旅程:

    三、傅里叶级数(Fourier Series)的相位谱

    上次的关键词是:从侧面看。这次的关键词是:从下面看。

    在第二课最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。

    先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事:

    先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。

    好,接下去画一个sin(3x)+sin(5x)的图形。

    别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?

    好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。

    但是在频域呢?则简单的很,无非就是几条竖线而已。

    所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。

    再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。

    傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。

    下面我们继续说相位谱:

    通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。

    鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。

    这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作2Pi或者360度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2Pi,就得到了相位差。

    在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。”

    注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为Pi。

    最后来一张大集合:

    四、傅里叶变换(Fourier Transformation)

    相信通过前面三章,大家对频域以及傅里叶级数都有了一个全新的认识。但是文章在一开始关于钢琴琴谱的例子我曾说过,这个栗子是一个公式错误,但是概念典型的例子。所谓的公式错误在哪里呢?

    傅里叶级数的本质是将一个周期的信号分解成无限多分开的(离散的)正弦波,但是宇宙似乎并不是周期的。曾经在学数字信号处理的时候写过一首打油诗:

    往昔连续非周期,

    回忆周期不连续,

    任你ZT、DFT,

    还原不回去。

    (请无视我渣一样的文学水平……)

    在这个世界上,有的事情一期一会,永不再来,并且时间始终不曾停息地将那些刻骨铭心的往昔连续的标记在时间点上。但是这些事情往往又成为了我们格外宝贵的回忆,在我们大脑里隔一段时间就会周期性的蹦出来一下,可惜这些回忆都是零散的片段,往往只有最幸福的回忆,而平淡的回忆则逐渐被我们忘却。因为,往昔是一个连续的非周期信号,而回忆是一个周期离散信号。

    是否有一种数学工具将连续非周期信号变换为周期离散信号呢?抱歉,真没有。

    比如傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。这句话比较绕嘴,实在看着费事可以干脆回忆第一章的图片。

    而在我们接下去要讲的傅里叶变换,则是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。

    算了,还是上一张图方便大家理解吧:

    或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。

    所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。

    因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢?

    你见过大海么?

    为了方便大家对比,我们这次从另一个角度来看频谱,还是傅里叶级数中用到最多的那幅图,我们从频率较高的方向看。

    以上是离散谱,那么连续谱是什么样子呢?

    尽情的发挥你的想象,想象这些离散的正弦波离得越来越近,逐渐变得连续……

    直到变得像波涛起伏的大海:

    很抱歉,为了能让这些波浪更清晰的看到,我没有选用正确的计算参数,而是选择了一些让图片更美观的参数,不然这图看起来就像屎一样了。

    不过通过这样两幅图去比较,大家应该可以理解如何从离散谱变成了连续谱的了吧?原来离散谱的叠加,变成了连续谱的累积。所以在计算上也从求和符号变成了积分符号。

    不过,这个故事还没有讲完,接下去,我保证让你看到一幅比上图更美丽壮观的图片,但是这里需要介绍到一个数学工具才能然故事继续,这个工具就是——

    五、宇宙耍帅第一公式:欧拉公式

    虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1的平方根,可是它真正的意义是什么呢?

    这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。

    我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。

    同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能——旋转。

    现在,就有请宇宙第一耍帅公式欧拉公式隆重登场——

    这个公式在数学领域的意义要远大于傅里叶分析,但是乘它为宇宙第一耍帅公式是因为它的特殊形式——当x等于Pi的时候。

    经常有理工科的学生为了跟妹子表现自己的学术功底,用这个公式来给妹子解释数学之美:”石榴姐你看,这个公式里既有自然底数e,自然数1和0,虚数i还有圆周率pi,它是这么简洁,这么美丽啊!“但是姑娘们心里往往只有一句话:”臭屌丝……“

    这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义:

    欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。

    关于复数更深的理解,大家可以参考:

    复数的物理意义是什么?

    这里不需要讲的太复杂,足够让大家理解后面的内容就可以了。

    六、指数形式的傅里叶变换

    有了欧拉公式的帮助,我们便知道:正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。而螺旋线的叠加如果用一个形象的栗子来理解是什么呢?

    光波

    高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验:

    所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。

    但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从0到无穷所有频率的组合。

    这里,我们可以用两种方法来理解正弦波:

    第一种前面已经讲过了,就是螺旋线在实轴的投影。

    另一种需要借助欧拉公式的另一种形式去理解:

    将以上两式相加再除2,得到:

    这个式子可以怎么理解呢?

    我们刚才讲过,e^(it)可以理解为一条逆时针旋转的螺旋线,那么e^(-it)则可以理解为一条顺时针旋转的螺旋线。而cos(t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!

    举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。

    这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。

    好了,刚才我们已经看到了大海——连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子:

    想象一下再往下翻:

    是不是很漂亮?

    你猜猜,这个图形在时域是什么样子?

    哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。

    顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。

    如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。

    好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下:

    好了,傅里叶的故事终于讲完了,下面来讲讲我的故事:

    这篇文章第一次被写下来的地方你们绝对猜不到在哪,是在一张高数考试的卷子上。当时为了刷分,我重修了高数(上),但是后来时间紧压根没复习,所以我就抱着裸考的心态去了考场。但是到了考场我突然意识到,无论如何我都不会比上次考的更好了,所以干脆写一些自己对于数学的想法吧。于是用了一个小时左右的时间在试卷上洋洋洒洒写了本文的第一草稿。

    你们猜我的了多少分?

    6分

    没错,就是这个数字。而这6分的成绩是因为最后我实在无聊,把选择题全部填上了C,应该是中了两道,得到了这宝贵的6分。说真的,我很希望那张卷子还在,但是应该不太可能了。

    那么你们猜猜我第一次信号与系统考了多少分呢?

    45分

    没错,刚刚够参加补考的。但是我心一横没去考,决定重修。因为那个学期在忙其他事情,学习真的就抛在脑后了。但是我知道这是一门很重要的课,无论如何我要吃透它。说真的,信号与系统这门课几乎是大部分工科课程的基础,尤其是通信专业。

    在重修的过程中,我仔细分析了每一个公式,试图给这个公式以一个直观的理解。虽然我知道对于研究数学的人来说,这样的学习方法完全没有前途可言,因为随着概念愈加抽象,维度越来越高,这种图像或者模型理解法将完全丧失作用。但是对于一个工科生来说,足够了。

    后来来了德国,这边学校要求我重修信号与系统时,我彻底无语了。但是没办法,德国人有时对中国人就是有种藐视,觉得你的教育不靠谱。所以没办法,再来一遍吧。

    这次,我考了满分,而及格率只有一半。

    老实说,数学工具对于工科生和对于理科生来说,意义是完全不同的。工科生只要理解了,会用,会查,就足够了。但是很多高校却将这些重要的数学课程教给数学系的老师去教。这样就出现一个问题,数学老师讲得天花乱坠,又是推理又是证明,但是学生心里就只有一句话:学这货到底干嘛用的?

    缺少了目标的教育是彻底的失败。

    在开始学习一门数学工具的时候,学生完全不知道这个工具的作用,现实涵义。而教材上有只有晦涩难懂,定语就二十几个字的概念以及看了就眼晕的公式。能学出兴趣来就怪了!

    好在我很幸运,遇到了大连海事大学的吴楠老师。他的课全程来看是两条线索,一条从上而下,一条从下而上。先讲本门课程的意义,然后指出这门课程中会遇到哪样的问题,让学生知道自己学习的某种知识在现实中扮演的角色。然后再从基础讲起,梳理知识树,直到延伸到另一条线索中提出的问题,完美的衔接在一起!

    这样的教学模式,我想才是大学里应该出现的。

    最后,写给所有给我点赞并留言的同学。真的谢谢大家的支持,也很抱歉不能一一回复。因为知乎专栏的留言要逐次加载,为了看到最后一条要点很多次加载。当然我都坚持看完了,只是没办法一一回复。

    本文只是介绍了一种对傅里叶分析新颖的理解方法,对于求学,还是要踏踏实实弄清楚公式和概念,学习,真的没有捷径。但至少通过本文,我希望可以让这条漫长的路变得有意思一些。

    最后,祝大家都能在学习中找到乐趣。…

    谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。

    ====================================分割线================================ 本文作者:AI研习社 本文转自雷锋网禁止二次转载, 原文链接 相关资源:新年快乐! python实现绚烂的烟花绽放效果

    最新回复(0)